Back to the article index

Contents

TITLE PAGE

1. DARK MATTER AND STRUCTURE FORMATION
1.1. Introduction
1.2. Cosmology Basics
1.2.1. Friedmann-Robertson-Walker Universes
1.2.2. Is the Gravitational Force propto r-1 at Large r ?
1.3. Age, Expansion Rate, and Cosmological Constant
1.3.1. Age of the Universe t0
1.3.2. Hubble Parameter H0
1.3.2.1. Relative Distance Methods
1.3.2.2. Fundamental Physics Approaches
1.3.2.3. Correcting for Virgocentric Infall
1.3.3. Cosmological Constant Lambda
1.4. Measuring Omega0
1.4.1. Very Large Scale Measurements
1.4.2. Large-scale Measurements
1.4.3. Measurements on Scales of a Few Mpc
1.4.4. Estimates on Galaxy Halo Scales
1.4.5. Cluster Baryons vs. Big Bang Nucleosynthesis
1.4.6. Cluster Morphology and Evolution
1.4.7. Early Structure Formation
1.4.8. Conclusions Regarding Omega
1.5. Dark-Matter Particles
1.5.1. Hot, Warm, and Cold Dark Matter
1.5.2. Cold Dark Matter
1.5.2.1. Axions
1.5.2.2. Supersymmetric WIMPs
1.5.2.3. MACHOs
1.5.3. Hot Dark Matter: Data on Neutrino Mass
1.6. Origin of Fluctuations: Inflation and Topological Defects
1.6.1. Topological Defects
1.6.2. Cosmic Inflation: Introduction
1.6.3. Inflation and the Origin of Fluctuations
1.6.4. Eternal Inflation
1.6.5. A Supersymmetric Inflation Model
1.6.6. Inflation with Omega0 < 1
1.6.7. Inflation Summary
1.7. Comparing DM Models to Observations: LambdaCDM vs. CHDM
1.7.1. Building a Cosmology: Overview
1.7.2. Lessons from Warm Dark Matter
1.7.3. LambdaCDM vs. CHDM - Linear Theory
1.7.4. Numerical Simulations to Probe Smaller Scales
1.7.5. CHDM: Early Structure Troubles?
1.7.6. Advantages of Mixed CHDM Over Pure CDM Models
1.7.7. Best Bet CDM-Type
References

Chapter Contents