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Abstract

Star clusters stand at the intersection of much of modern astrophysics:

the interstellar medium, gravitational dynamics, stellar evolution, and

cosmology. Here we review observations and theoretical models for the

formation, evolution, and eventual disruption of star clusters. Current

literature suggests a picture of this life cycle with several phases:

• Clusters form in hierarchically-structured, accreting molecular

clouds that convert gas into stars at a low rate per dynamical

time until feedback disperses the gas.

• The densest parts of the hierarchy resist gas removal long enough

to reach high star formation efficiency, becoming dynamically-

relaxed and well-mixed. These remain bound after gas removal.

• In the first ∼ 100 Myr after gas removal, clusters disperse mod-

erately fast, through a combination of mass loss and tidal shocks

by dense molecular structures in the star-forming environment.

• After ∼ 100 Myr, clusters lose mass via two-body relaxation and

shocks by giant molecular clouds, processes that preferentially

affect low-mass clusters and cause a turnover in the cluster mass

function to appear on ∼ 1− 10 Gyr timescales.

• Even after dispersal, some clusters remain coherent and thus de-

tectable in chemical or action space for multiple galactic orbits.

In the next decade a new generation of space- and AO-assisted

ground-based telescopes will enable us to test and refine this picture.
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1. INTRODUCTION

The galaxy is in fact nothing but a congeries of innumerable stars grouped together in clusters. . .

Siderius Nuncius (Sidereal Messenger), Galileo Galilei, 1610

1.1. Historical background and motivation

After four centuries since Galileo’s first observations, star clusters remain mysterious. What are the uni-

fying principles that govern the formation of globular and open clusters, groups, associations and super-

associations? As illustrated in Figure 11, clusters cover a huge range of mass, size, and density scales. The

clusters shown span ages from ∼ 1 Myr to > 10 Gyr, and masses from ∼ 102 − 106 M�. Some are so

1The source code and data tabulations used to produce all the figures in this review are available at https:

//bitbucket.org/krumholz/cluster_review/, and also are provided as Supplementary Materials. We make use of
the following software packages: scipy (Oliphant 2007; Millman & Aivazis 2011), matplotlib (Hunter 2007), astropy
(Astropy Collaboration et al. 2013), and SLUG (da Silva, Fumagalli & Krumholz 2012; Krumholz et al. 2015b).

www.annualreviews.org • Star clusters 3

https://bitbucket.org/krumholz/cluster_review/
https://bitbucket.org/krumholz/cluster_review/


0.1◦

0.68 pc

ONC, T < 3 Myr

10′′

0.40 pc

Arches, T ≈ 2− 3 Myr

1′′

0.29 pc

NGC 265, T ≈ 250 Myr

0.5◦

0.41 pc

Hyades, T ≈ 625 Myr

30′′

0.39 pc

Coll 261, T ≈ 7 Gyr

10′′

0.32 pc

NGC 6535, T > 10 Gyr

20′′

0.43 pc

47 Tuc, T > 10 Gyr

2′

0.38 pc

NGC 1252: Fake News

Figure 1

Images of a range of star clusters, along with NGC 1252, an object previously classified as a cluster but now known
to be an asterism. The field of view in all frames is 3 pc× 3 pc, and North is up; angular sizes are indicated by

scale bars. Image sources are: Orion Nebular Cluster (ONC) – Robberto et al. (2013); Arches cluster – NASA &

ESA; NGC 265 – NASA & ESA; Davide De Martin (ESA/Hubble) and Edward W. Olszewski (University of
Arizona, USA); Hyades – NASA, ESA, & STScI; Collinder 261 – ESO/Digitized Sky Survey; NGC 6535 –

ESA/Hubble & NASA, Gilles Chapdelaine; 47 Tuc – NASA, ESA, and the Hubble Heritage

(STScI/AURA)-ESA/Hubble Collaboration; J. Mack (STScI) and G. Piotto (University of Padova, Italy); NGC
1252 – WEBDA database, https://www.univie.ac.at/webda/.

compact and rich that stars become lost in confusion in the 3 pc-frames shown, others are so sparse and

extended that most cluster members are outside the frame. Some are classified as open clusters (Arches,

NGC 265, Hyades, Coll 261), some as globular clusters (NGC 6535, 47 Tuc). The Orion Nebula Cluster

(ONC) is still forming and, depending on the author, might not even be classified as a cluster at all. NGC

1252 had been classified as an open cluster since 1888, but in 2018 was shown to be merely an asterism

(Kos et al. 2018b). Cluster formation is central to the star formation process. Conceivably, all stars formed

in groups, clusters, or hierarchies, although, for this to be true, most clusters must have dissolved into

the Galactic background soon after formation. However, our understanding of when, how, and why stars

cluster remains primitive (see reviews by Krumholz et al. 2014, Renaud 2018, and Adamo & Bastian 2018).

A review of clusters is timely for several reasons. One is the emerging overlap between the traditionally

separate communities focused on globular clusters and modern-day star clusters and star formation. These

have been separate in the past because star clusters in the disk of the Milky Way, generally classified

as open clusters (OCs), and those in the halo, generally classified as globular clusters (GCs), appear to

occupy distinct loci in the parameter space of mass, age, and metallicity. New data have begun to blur this

distinction: even in the Milky Way there is substantial overlap in both metallicity and density between OCs

4 Krumholz, McKee, & Bland-Hawthorn
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and GCs, and in rapidly star-forming local galaxies such as the Antennae (Zhang & Fall 1999) and M82

(McCrady & Graham 2007) there is overlap in mass as well. While there is still a bimodality in the star

cluster age and spatial distribution, this may simply reflect the combined effects of cluster dissolution and

the history of galaxy assembly. In this view, toward which we shall mostly tend here (see also Kruijssen

2014 and Forbes et al. 2018), GCs are no different than any other type of star cluster in their formation and

internal dynamics; only their cosmological history is different. Their origins are therefore best addressed

in the context of general models for the formation and evolution of star clusters, hence the need for this

review.2

An additional motivation for this review is to bring together the results of modern studies of stellar

kinematics and abundances with the formation and evolution of star clusters. As with GCs and OCs, these

have traditionally been somewhat separate fields, with the stellar kinematics and abundances community

focused more on the long-term dynamical evolution of stars in and around the Galaxy, and the star formation

community paying more attention to the dynamics of interstellar gas and the effects of star formation and

stellar feedback on it. This separation is no longer viable. In the era of Gaia and massive spectroscopic

surveys, kinematic and abundance data are now becoming accurate enough that it should be possible to

trace stars that are now part of the field back to their birth places, or at least to reconstruct some of the

now-dissolved structures in which they were born. To guide such reconstructions, however, will require

theoretical and observational input from the star formation community.

With these motivations in mind, we first review current observational constraints on star cluster pop-

ulations, and then discuss our current understanding, or lack therefore, of the processes by which clusters

form, evolve, and eventually disperse.

Surveys referenced

in this review:

PHAT:
Panchromatic

Hubble Andromeda
Treasury (Dalcanton

et al. 2012)

LEGUS: Legacy
Extragalactic UV

Survey (Calzetti

et al. 2015)

GOALS: Great

Observatories

All-sky LIRG Survey
(Armus et al. 2009)

GRS: Galactic Ring

Survey (Jackson
et al. 2006)

ATLASGAL: APEX

Telescope Large
Area Survey of the

Galaxy (Schuller
et al. 2009)

GALAH: Galactic

Archaeology with
HERMES (De Silva

et al. 2015)

RAVE: Radial
Velocity Experiment

(Steinmetz et al.

2006)

1.2. Prelude: what is a star cluster?

1.2.1. The need for a definition. The first question that any discussion of star clusters must face, going

back at least to Trumpler (1930), is how to define a cluster and distinguish clusters from multiple systems.

In their recent review, Portegies Zwart, McMillan & Gieles (2010) define a star cluster as a set of stars that

are gravitationally bound to one another, while the earlier review by Lada & Lada (2003) defines a cluster

as a collection of stars with a mass density large enough (& 1 M� pc−3) to resist tidal disruption in Solar

neighborhood conditions, and numerous enough to avoid N -body evaporation for at least 100 Myr. One

might also consider defining clusters as concentrations of stars whose mass density significantly exceeds

the mean in their galactic neighborhood (≈ 0.1 M� pc−3 near the Sun – McKee, Parravano & Hollenbach

2015). For older stellar populations these definitions are in practice nearly identical. A group of stars of

mean density ρ∗ and radius r is unbound only if its velocity dispersion σ & r
√
Gρ∗, so the time required

for it to disperse is of order the crossing time tcr = r/σ . 1/
√
Gρ∗. At the density threshold proposed by

Lada & Lada (2003), this is . 10 Myr, so overdensities older than this must be either held together by

self-gravity or external forces, or be short-lived transients.

In this review, however, we are interested in the formation of star clusters as well as their evolution,

and thus we cannot limit ourselves to stellar populations that are older than their internal dynamical

time (c.f. Portegies Zwart, McMillan & Gieles 2010; Gieles & Portegies Zwart 2011). However, younger

populations often have complex internal structures such that there is no single way to decompose them into

clusters. We illustrate this point with the example of the ONC in Figure 2, where the left two panels show

the results of applying two different cluster identification methods that show little agreement: a Bayesian

2We do note, however that nuclear star clusters probably do represent a physically distinct class, in that their
formation and evolution are inseparably linked with those of the central black hole around which they orbit; for this
reason we will not include nuclear clusters within the scope of this review.

www.annualreviews.org • Star clusters 5



−0.1◦0.0◦0.1◦

∆RA

−0.15◦

−0.10◦

−0.05◦

0.00◦

0.05◦

0.10◦

0.15◦

∆
D

E
C

ONC - mixture

−0.1◦0.0◦0.1◦

∆RA

ONC - MST

−0.2′′0.0′′0.2′′

∆RA

−0.2′′

−0.1′′

0.0′′

0.1′′

0.2′′

∆
D

E
C

1 pc

HST, 1 Mpc

Figure 2

Sample decompositions of the stars in and around the Orion Nebula Cluster (ONC). In the left two panels, gray

dots show stars from the catalog of Da Rio et al. (2009); the axes indicate offset from the position of θ1c Ori, the
most luminous star in the cluster. In the left panel, ellipses mark the clusters identified by Kuhn et al. (2014) based

on a Bayesian decomposition into isothermal ellipsoids. The middle panel shows a minimum spanning tree (MST)
decomposition, performed on the Da Rio et al. (2009) catalog using a pruning length of 0.′3; different colours

indicate the different sub-clusters identified by MST. The right panel is a synthetic UBV image produced by

placing the ONC to a distance of 1 Mpc (assuming that the true distance is 389 pc – Kounkel et al. 2018), and
assuming diffraction-limited imaging with a 2.4 m-diameter telescope such as the Hubble Space Telescope. The

region shown in the right panel is the same as shown in the two other panels. Colors are scaled logarithmically to

give a dynamic range of 100 in flux for all channels.

decomposition into isothermal ellipsoids (Kuhn et al. 2014, left), and a minimum spanning tree (middle).

Numerous other decompositions are possible as well (Schmeja 2011). It is not clear which of these, if any,

correspond to physically meaningful concepts such as a distinction between structures with positive or

negative total energy. Moreover, none of the clustering methods used on resolved stars in the Milky Way

are likely to correspond to the clusters picked out by most extragalactic surveys. As the right panel of

Figure 2 shows, the ONC would certainly be seen as a single cluster (were it detected at all) in a galaxy

at a distance of ≈ 1 Mpc, as targeted by the PHAT survey (Dalcanton et al. 2012, see Margin Note), or

∼ 3 − 10 Mpc, typical of the LEGUS survey (Calzetti et al. 2015). We return to the question of how to

handle the ambiguity in defining clusters at young ages in § 2.7.

1.2.2. Working definition. Given the discussion above, we shall follow Trumpler (1930) and define clusters

very generally, so that they can be studied throughout their lives. For our purposes a star cluster is a

group of at least 12 stars (to clearly distinguish it from a multiple star system – Trumpler 1930) with a

mean density that (i) is at least a factor of a few times the background density (similar to the constraint

adopted by Lada & Lada 2003), with the factor being larger in larger galaxies so that the overdensity is

statistically significant, and (ii) is much greater than the local density of dark matter. Such groups of stars

are physically associated while they form, but there is no constraint on the formation timescale or lifetime;

in contrast to Lada & Lada (2003), we do not require the cluster to be denser than the gas cloud out of

which it forms, nor do we require that it have enough members to avoid evaporation for 100 Myr. Clusters

generally dissipate in time (§ 4), and once they no longer satisfy our criteria we refer to them as “dissolved

clusters” (§ 5).

Star clusters can be gravitationally bound or unbound, and young clusters can be a mixture. Unbound

6 Krumholz, McKee, & Bland-Hawthorn



clusters are termed associations; bound clusters can be categorized as OCs or GCs. The most massive

and young OCs are sometimes referred to as young massive clusters (YMCs) or super-star clusters (SSCs);

they are sometimes also called young GCs, although it is unknown if they will in fact evolve into clusters

like the GCs we observe today. YMCs have traditionally been defined by mass > 104 M� and age < 100

Myr, but the lines are fuzzy and there is no particular physical significance to them. Similarly, OCs and

GCs do not have precise definitions. In the Milky Way, most OCs have masses . 5000M� and ages

. 6 Gyr, whereas most GCs have masses & 104 M� and ages & 6 Gyr (Kharchenko et al. 2013), but in

other galaxies these catagories have more overlap. The metallicity of OCs overlaps that of the thick-disk

population of Galactic GCs, which has [Fe/H] > −0.8 (Zinn 1985). Clusters with ages . few hundred Myr

are often organized hierarchically, with OCs and YMCs being embedded in associations with sizes up to

a few hundred pc, associations grouped together in complexes at ∼kpc scales, etc.; there is no physical

division between these scales for the unbound structures (Gouliermis 2018). Despite the wide range of

physical properties of these various types of star clusters, there is no evidence that they do not form via the

same basic mechanism (Elmegreen & Efremov 1997; § 3). The only clear intrinsic difference among these

different types of clusters is that old GCs exhibit anti-correlations in some light element abundances and

have multiple stellar populations, hallmarks that are never observed in OCs (§ 2.6). Since these phenomena,

which are not understood, have been reviewed recently by Renzini (2013) and Bastian & Lardo (2018), we

shall not discuss them further here.

2. DEMOGRAPHICS: OBSERVATIONAL CONSTRAINTS

PDF: probability

distribution function

Initial mass function
(IMF): PDF of

initial mass

distribution of stars
in a stellar ensemble

Present day mass
function (PDMF):
PDF of observed

mass distribution of

stars in a stellar
ensemble

Initial cluster mass
function (ICMF):
PDF of initial mass

distribution of star

clusters

Cluster mass
function (CMF):
PDF of observed
mass distribution of

star clusters

Cluster age function
(CAF): PDF of

observed age
distribution of star

clusters

The physical processes that govern the formation and evolution of star clusters encode themselves in the

distributions of star clusters’ properties – mass, age, size, etc. Any review of star clusters must therefore

begin with the observational constraints and how they are obtained. In this section and the subsequent

ones we will define a number of symbols, which we summarize for convenience in Table 1.

2.1. Methods

Methods for determining the demographics of star clusters can be divided into those that operate on resolved

stellar populations, and those that operate on unresolved populations.

2.1.1. Resolved Stellar Populations. For star clusters in the Milky Way, the Magellanic Clouds, and M31

(using Hubble Space Telescope resolution), it is possible to resolve individual main sequence stars down to

masses of a few M� or less. This statement oversimplifies the situation somewhat; the luminosity or mass

limit down to which it is possible to resolve stars is a complex function of the stellar density and luminosity

distribution in the region being studied. It is possible to resolve massive main sequence stars in relatively

sparse regions even beyond the Local Group (e.g., Larsen et al. 2011), while confusion is a problem for the

most crowded regions even in the Milky Way (e.g., Ascenso, Alves & Lago 2009). There exists a broad

range of parameter space where stars are partially resolved, i.e., their separations are comparable to the

observational point spread function (psf); the statistical and photometric techniques used to analyze such

fields are beyond the scope of this review.

When individual stars can be resolved, placing them on a color-magnitude diagram (CMD) provides

the most direct method of determining the properties of the parent star cluster. In principle, the CMD

allows one to read off the masses of the individual stars almost directly and, if the main sequence turn-off

is resolved, to infer the age of the population as well. By adding spectroscopy to photometry, one can

also determine the stars’ compositions. While this method is direct, it does encounter complications. In

young clusters where the resolved stars are pre-main sequence, the choice of evolutionary tracks can induce

www.annualreviews.org • Star clusters 7



Table 1 Symbols used in this review

Symbol Meaning

αM Index of cluster mass distribution, dN/dM ∝MαM (§ 2.2)

Mc Upper truncation in cluster mass function (§ 2.2)

αT Index of cluster age distribution, dN/dT ∝ TαT (§ 2.3)

Γ Fraction of stellar mass in bound clusters (§ 2.4)

rh Cluster half-mass radius (§ 2.5)

αvir Virial ratio of a cloud or cluster (§ 3.1)

MJ Jeans mass (§ 3.1)

tcr Crossing time of a star cluster (§ 3.1)

tff Free-fall time (§ 3.2)

εff Fraction of gas converted to stars per free-fall time (§ 3.2)

η Mass loading factor, i.e., ratio of mass ejected to mass converted to stars (§ 3.2, § 3.3)

ε∗ Fraction of gas converted to stars at the end of cluster formation (§ 3.2, § 3.3)

tsf Time over which star formation takes place (§ 3.2, § 3.4)

vesc Escape speed from a star cluster (§ 3.3.1)

ΣDR Surface density below which direct radiation pressure becomes important (§ 3.3.3)

ΣIR Surface density above which indirect radiation pressure becomes important (§ 3.3.4)

ρSN Density above which cluster formation is complete before the first supernova (§ 3.3.6)

σ Cluster velocity dispersion (§ 4.1)

rc King (1966) or Elson, Fall & Freeman (1987) model cluster core radius (§ 4.1)

rtr King (1966) model cluster truncation radius (§ 4.1)

W0 King (1966) model cluster dimensionless central potential (§ 4.1)

c King (1966) model cluster concentration parameter, c = log(rtr/rc) (§ 4.1)

rti Cluster tidal radius (§ 4.1)

EJ Jacobi energy (§ 4.1)

trlx Cluster relaxation time at the half-mass radius (§ 4.2.2)

significant uncertainties in the final properties (e.g., Da Rio et al. 2012), and a non-negligible range of ages

may be present, so that the system cannot be described by a single age (e.g., Reggiani et al. 2011; Getman

et al. 2018). If the observations do not resolve down to the peak of the initial mass function (IMF), one

may need to extrapolate using an assumed IMF to account for the mass of unresolved stars (e.g., Lada &

Lada 2003; Beerman et al. 2012).

Despite these limitations, however, two other uncertainties are more important. One is the error intro-

duced by the need to correct demographics for clusters that are too small or too old to make it into the

catalog. For resolved observations, catalog completeness is invariably a function not just of the mass and

age of the stellar population, but also its concentration, the exact masses and ages of its most luminous

few stars, and the density of the background (Silva-Villa & Larsen 2011; Johnson et al. 2015b). The other

source of uncertainty is in assignment of stars to clusters. As already discussed in § 1.2, for populations

that are not old enough to have relaxed, there may be no unique way to decompose a collection of stars

into clusters, and variations in how one defines a cluster can lead to order of magnitude differences in the

inferred number of clusters and their properties (Bressert et al. 2010). However, even for somewhat older

populations, catalogs constructed using different methods can easily differ by ∼ 10 − 20% even when the

underlying data are identical (Johnson et al. 2015b). These errors are generally larger than the uncertainties

on the properties of individual clusters.
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Figure 3

Color evolution of a simple stellar population with a fully sampled IMF, including nebular emission. In each panel

the line shows the intrinsic color (in AB mag) as a function of population age. Arrows, placed at intervals of 0.25

dex in age starting at log(T/yr) = 6.25, show observed color for a visual extinction AV = 0.5 mag for the stars,
AV = 1.05 mag for nebular light. This calculation uses SLUG stellar population synthesis code (da Silva, Fumagalli

& Krumholz 2012; Krumholz et al. 2015b), run with a Chabrier (2005) IMF, Solar metallicity, MIST rotating

stellar evolution models (Choi et al. 2016), starburst99 atmosphere models (Leitherer et al. 1999), a Calzetti et al.
(2000) starburst dust attenuation curve, and HST/WFC3 filters. However, other choices for these parameters yield

qualitatively similar results.

2.1.2. Unresolved Populations. While CMDs offer the most reliable method for determining star cluster

properties, at distances & 1 Mpc it is not possible to resolve any but the most luminous individual stars.

Consequently, studies that probe a wide range of environments must use unresolved populations. In an

unresolved observation, a star cluster is distinguished from a single star or other point source either by the

fact that its light is more extended than the observational psf (for targets at distances below tens of Mpc)

or that it is too luminous to be a single massive star (for more distant targets). In the earliest work with

unresolved populations authors simply analyzed luminosity functions (e.g., Whitmore et al. 1993, 1999),

but one can also infer physical properties using simple stellar population (SSP) models. In practice this

procedure can be carried out in several different ways. The simplest is to generate theoretical luminosities

as a function of mass and age by assuming a stellar population that fully samples the IMF (including models

for nebular emission and dust extinction) and find the mass and age that best match the observations using

χ2 or a similar goodness-of-fit statistic (e.g., Zhang & Fall 1999; Adamo et al. 2010). More complex methods

take into account the stochastic fluctuations in light output that occur as a result of partial sampling of the

IMF in clusters smaller than ∼ 104 M� (e.g., Fouesneau & Lançon 2010; Popescu, Hanson & Elmegreen

2012; de Meulenaer et al. 2013; Krumholz et al. 2015a) or add narrowband photometry targeting nebular

lines (usually Hα) to provide better age discrimination (e.g., Fouesneau et al. 2012; Bastian et al. 2012;

Chandar et al. 2016).

Fitting star cluster properties from photometry leads to substantially larger errors than doing so from

resolved measurements of individual stars, with the magnitude of the error depending on the locus in color

space. We illustrate this point in Figure 3, which shows the trajectory that an SSP traces out in color

over its lifetime. The process of inferring cluster age and extinction essentially amounts to placing an

observed point on a multidimensional color-color plot such as Figure 3, and finding the location on an

extinction-adjusted SSP track such as the one shown that gets as close as possible to the observed point

in every dimension. As is apparent from the figure, for ages below ≈ 5 Myr or above ≈ 50 Myr, in at

least some color combinations, SSP tracks are relatively straight and not parallel to the extinction vector.

Consequently, the matching process is straightforward and there is little ambiguity in the determination of

ages; comparing photometric ages to those inferred from CMDs, Elson & Fall (1985, 1988) estimate that

www.annualreviews.org • Star clusters 9



Figure 4

Examples of unresolved clusters of different morphological classes. Each panel shows a three-color UBV image of a

star cluster in NGC 628, from Adamo et al. (2017). The ring shows a radius of 0.′′28, approximately 13.4 pc at the
distance of NGC 628. The morphologies are classified as, from left to right, compact and symmetric, compact and

asymmetric, and multiply-peaked. An “exclusive” catalog, in the sense used in this review, would include the left

two objects but exclude the one on the right, while an “inclusive” catalog would include all three. A comparison to
Figure 2 suggests that the ONC might well be excluded from an “exclusive” catalog.

photometric ages for massive clusters are accurate to ≈ 0.3 dex. At ages of ≈ 5 − 50 Myr, however, SSP

colors oscillate rapidly and tracks in color space frequently cross themselves, making age determinations

quite uncertain. For example, notice that SSPs with ages of ≈ 8 Myr (dark green in the figure) have very

similar colors to SSPs with ages of ≈ 30 Myr (light blue in the figure), and that the separation between them

is mostly along the extinction vector, making these two possibilities difficult to disentangle, particularly

once stochastic color variation due to finite IMF sampling is taken into account (also see Máız Apellániz

2009 and Krumholz et al. 2015a).

Exclusive catalog: a

star cluster catalog
that excludes objects

that do not pass

morphological tests
for compactness and

roundness

Inclusive catalog: a
star cluster catalog

without additional

morphological
requirements

On top of these errors that apply to individual clusters, catalog construction and completeness correc-

tion induce additional errors on measurements of population demographics. Completeness correction for

unresolved observations faces essentially the same challenges as for resolved data. Recently Krumholz et al.

(2018) proposed a method to carry out full forward-modelling of an entire photometric catalog, simulta-

neously accounting for completeness and stochasticity, but this method is thus far experimental. Catalog

construction is the more serious issue, because it raises the question of how one should handle sources where

the light distribution is multiply-peaked or contains significant color gradients, as illustrated in Figure 4.

Some authors, who limit the definition of cluster to dynamically-relaxed structures (c.f. § 1.2), discard such

sources on the grounds that they are not relaxed (e.g., Bastian et al. 2011, 2012), while others adopt a

broader definition and thus retain them (e.g., Chandar et al. 2010, 2011, 2014); some split the difference by

including all objects but then reporting separate analyses for objects of differing morphology (e.g., Adamo

et al. 2017). These different methods of catalog construction have historically led to extreme confusion

in interpretation of observations, since inclusive catalogs tend to have ≈ 30 − 50% more members in the

youngest age bin than exclusive ones, with much smaller differences at older ages (Chandar et al. 2014;

Messa et al. 2018b). In the discussion that follows, we will minimize this confusion by identifying whether

a particular catalog was constructed using criteria that are “exclusive” (i.e., the catalog excludes non-

symmetric objects) or “inclusive”, and pointing out when the choice of one method or the other leads to

systematic differences. However, we caution that all existing cluster catalogs for galaxies at distances & 20

Mpc are necessarily inclusive, because limited resolution makes morphological measurement impossible in

10 Krumholz, McKee, & Bland-Hawthorn



such distant samples.

Authors who build exclusive catalogs generally assume that morphology can be used as a proxy for

boundedness. This likely holds in one direction: since star-forming regions are morphologically complex, if

the observed stars have a round, compact morphology, it is likely that they have relaxed into it and thus

are bound. However, the converse need not be true, i.e., there is no reason to assume that a population

that is too young to have dispersed is unbound simply because it is not round. The implication is that,

for young stellar populations, an exclusive approach probably omits everything that is not bound, but also

discards some unknown number of bound systems. By contrast, an inclusive catalog captures all structures

above some luminosity threshold without regard to their dynamical state.

2.2. Mass distribution

The most basic property of a star cluster is its mass, and thus the most basic distribution for star clusters

within a galaxy is the observed cluster mass function (CMF).3 Figure 5 summarises recent measurements

for the CMFs of star clusters in the disks of Local Group galaxies. All observed disk CMFs appear to be

reasonably well-described by a power-law dN/dM ∝ MαM , with values of αM = −2 ± 0.2.4 A slope of

αM = −2 corresponds to equal mass per logarithmic bin, and thus is the expected slope for a completely

scale-free distribution. In normal star-forming galaxies, the mass function slope is generally measured over

the range from ≈ 103 − 105 M�. The lower limit on this range is entirely a function of observational

limitations – only in a few cases do we have cluster samples that are complete enough below ≈ 103 M�
to enable measurement of a CMF, and in those cases the data are consistent with αM ≈ −2 down to the

completeness limit. Indeed, some authors have claimed that the power law continues to masses as small as

≈ 20 M�, corresponding to individual massive stars (e.g., Lamb et al. 2010).

The nature of the upper limit is less clear. In most galaxies, the total number of clusters is such

that very few with masses & 105 M� would be expected even for a pure power-law mass function, and in

galaxies with cluster populations large enough that such clusters would be expected – the Antennae, M82,

and various luminous infrared galaxies (LIRGs) – they are found. Consistent with this, the luminosity of

the brightest cluster in a galaxy is well correlated with the luminosity of the galaxy and its star formation

rate (Larsen 2002). However, some authors report evidence that the observed CMF or luminosity function

is better fit by power-law that is truncated at a mass Mc (either a hard truncation or a Schechter function,

dN/dM ∝ MαM e−M/Mc) than a pure power-law (e.g., Bastian 2008; Larsen 2009; Bastian et al. 2012;

Adamo et al. 2015, 2017); others question the statistical robustness of this conclusion (Mok, Chandar &

Fall 2018). Any truncation would need to vary systematically with some other galaxy property (e.g., the

Jeans mass in the disk, § 3.1.1) in order to explain the presence of more massive clusters in more luminous

galaxies.

The question of whether there is a truncation has been difficult to settle due to the challenge of deriving

realistic confidence intervals from observations where the dominant errors are catalog construction and

translation from photometry to cluster masses; some authors using nearly identical data sets nonetheless

reach differing conclusions about whether they provide evidence for a truncation (e.g., Adamo et al. 2015

versus Sun et al. 2016 on M83), and the results can be sensitive to the statistical power of the fitting method

3Mass as used to define the CMF, and as we shall use the term throughout § 2, refers to the mass that the stellar
population would have had before mass loss due to stellar evolution.

4It is common in the cluster literature to use the letter β rather than αM to denote the CMF index. We use αM ,
and αT for the analogous index of the cluster age function (§ 2.3), because while there is general agreement on the
usage of β, there is no equivalent agreement on the symbol used to represent the cluster age function index. On the
contrary, some groups use γ for this index, while others use γ to denote a completely unrelated quantity.
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Figure 5

Compilation of measured CMF slopes αM . In the main panel, colored points represent clusters in the disks of
nearby galaxies, and solid and dashed black lines are evolved Schechter function fits to the Milky Way’s GCs and to

an average of GCs in Virgo, respectively. The horizontal error bars show the range in cluster mass over which the

measurement was made, with open points indicating measurements from exclusive catalogs and filled points
indicating inclusive catalogs. Points are displaced slightly from the centers of their corresponding mass ranges to

minimize confusion. A straight dotted line on the high mass end of the horizontal error bar indicates that the

observation did not detect a truncation to the CMF, while a downwards curve indicates an observation that
reported a truncation. For the GC mass functions, αM is not constant in mass, and the line shows αM versus mass

for the best-fitting evolved Schechter function. In the main panel only whole-galaxy average measurements are

shown. The histogram on the right shows the distribution of measured CMF slopes for disk clusters; blue is the
distribution of whole-galaxy average measurements, while hatched shows measurements in which galaxies are

broken into independent sub-samples. In the legend, N is short for NGC, and the galaxies listed as ∗, †, and

GOALS are UGC09618NED02, IRAS20351+2521, and an average of 22 LIRGs from the GOALS sample,
respectively. References listed in the legend are as follows: MG07 = McCrady & Graham (2007), J07 = Jordán

et al. (2007), FC12 = Fall & Chandar (2012), B13 = Baumgardt et al. (2013), R14 = Ryon et al. (2014), C15 =
Chandar, Fall & Whitmore (2015), A15 = Adamo et al. (2015), C16 = Chandar et al. (2016), H16 = Hollyhead

et al. (2016), M16 = Mulia, Chandar & Whitmore (2016), J17 = Johnson et al. (2017), A17 = Adamo et al. (2017),

L17 = Linden et al. (2017), M18 = Messa et al. (2018b). The hatched histogram on the right also contains
sub-samples from Messa et al. (2018a).

(Messa et al. 2018a). The most convincing case for a deviation from a pure power-law mass function is

in M31, where Johnson et al. (2017) robustly identify a truncation mass of Mc ≈ 8.5 × 103 M� based

on a sample of ≈ 1000 clusters with masses determined from CMDs rather than unresolved photometry.

However, this survey does not cover some of the more actively star-forming parts of M31, and it is possible

these might host clusters larger than Mc. There is also indirect evidence for a truncated CMF in the

Milky Way, in the form of an observed truncation in the luminosity function for radio recombination line

emission from H ii regions (McKee & Williams 1997), although translating this into a truncation mass is

not straightforward.

Values of αM tend to be slightly larger for starbursting galaxies than for quiescent spirals. However, it

is unclear if this represents a real physical difference or an observational artifact: the starburst galaxies are

located at systematically larger distances, and thus observations of them have systematically lower spatial

resolution, which will tend to flatten the mass function by blurring multiple small objects into a single

large one. This matter will be “resolved” in the next decade by AO-assisted imagers and spectrographs on
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extremely large telescopes.

The mass function for the GCs found in the halos of galaxies is substantially different. It has a clear

turnover mass below which the number of clusters is either flat or increasing with mass. The distribution

can be reasonably well described as a lognormal with a characteristic mass of ≈ 105.3 M� (Brodie &

Strader 2006). However, a more physically-motivated description is the evolved Schechter function (Fall &

Zhang 2001; Jordán et al. 2007), which is simply a standard Schechter function modified by the assumption

that all clusters have lost a fixed amount of mass ∆; we discuss the physical motivation for this model in

§ 4.2.2. This gives a distribution dN/dM ∝ (M + ∆)αM,i exp [− (M + ∆) /Mc], where αM,i is the slope at

formation. The corresponding present-day slope is

αM =
d

d logM

(
log

dN

dM

)
=
−M (M − αM,iMc + ∆)

Mc (M + ∆)
, (1)

In Figure 5, we show αM for the Milky Way GC system and for the average of GC systems in the Virgo

cluster from Jordán et al. (2007);5 the best-fit Mc and ∆ values are both in the range 105.3 − 106.6 M�,

spanning the range of truncation masses inferred for disk clusters. However, the functional forms of the GC

and disk cluster mass functions are clearly very different, and the relationship between the two is a topic

to which we shall return below.

2.3. Age distribution

A second distribution of equal importance to the CMF is the age distribution of star clusters, the cluster

age function (CAF). For Milky Way GCs this distribution is centred at ages ∼ 10 Gyr with a width of

a few Gyr (Bastian & Lardo 2018). For clusters in disks, observers generally fit the CAF as a power-law

dN/dT ∝ TαT , where T is the cluster age6; some observers use a single αT for all clusters, while others

consider more complex forms where αT can be different for different age or mass ranges. However, in

practice most extragalactic samples cover a small enough dynamic range in mass and age that one can

define at most two or three bins with potentially differing αT values.

In a galaxy with a constant cluster formation rate, αT is a measure of how long clusters survive. Consider

a simple model, in the spirit of Boutloukos & Lamers (2003), where the probability per unit time that a

cluster of age T is destroyed is 1/aT for some constant factor a. If we consider a cohort of clusters at a single

age, our assumed destruction rate implies that their number will decrease with time as dN/dT = −N/aT .

Integrating, we find that the number that survive to age T is N = N0(T/T0)−1/a, where N0 is the number

of clusters at age T0. This corresponds to a CAF with αT = −1/a. Thus αT → 0 corresponds to the case

a� 1, i.e., clusters survive for many times their current age, while αT = −1 corresponds to a = 1, i.e., the

expected time required to destroy a cluster is equal to its current age.

While the interpretation of αT is straightforward, divining a consistent value of it from the published

literature is much more difficult. In part this is because different groups tend to subdivide the sample to be

fit in different ways, and to reach divergent conclusions both about the value of αT and whether it is different

at different ranges of cluster age or mass. Figure 6 shows a summary of recent observational determinations

for extragalactic systems, along with our fit to the completeness-corrected catalog of Piskunov et al. (2018)

5Jordán et al. (2007) give their fits in terms of the z-band luminosity. We have converted these values to masses
using their favored z-band mass to light ratio. The line shown in Figure 5 corresponds to Mc and ∆ values equal to
the average of the values given in their Table 3, where αM,i = −2 in their fits. Also note that, unlike elsewhere in
this section, we have not corrected for mass loss due to stellar evolution. Doing so would shift the distribution to
the right by a factor of ≈ 1.5− 2.

6Throughout this review we shall use T to denote cluster ages, and t for all other time quantities.
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Figure 6

Observational determinations of the CAF in galaxy disks. The horizontal range indicates the age interval over
which the measurement was made, while the value plotted in the vertical direction is the index αT (dN/dT ∝ TαT )

with error bars. For extragalactic data, open points correspond to exclusive catalogs (left panel), filled points to

inclusive ones (middle panel). The galaxy and source are as indicated in the legend (using the same abbreviations
as in Figure 5), and multiple points for a single galaxy correspond to subsamples of clusters in that galaxy,

separated either by mass or by location; we have added a small random displacement to the horizontal positions of

points to prevent them from overlapping. The black line shown in both the left and middle panels is a smoothed
basis spline fit to the catalog of Piskunov et al. (2018) for clusters within 2 kpc in the Sun. The right panel shows a

histogram of αT values for the extragalactic catalogs, with inclusive catalogs and exclusive catalogs for ages below

108 yr shown separately. References are as follows: F14 = Fouesneau et al. (2014), SV14 = Silva-Villa et al. (2014),
R14 = Ryon et al. (2014), C17 = Chandar et al. (2017), A17 = Adamo et al. (2017), L17 = Linden et al. (2017),

M18 = Messa et al. (2018a,b), P18 = Piskunov et al. (2018).

for Milky Way clusters within ≈ 2 kpc of the Sun.7

Figure 6 shows that there is a systematic difference in slopes between inclusive and exclusive catalogs

at young ages. The fits from exclusive catalogs at T . 108 yr have αT ≈ −0.3 to −0.2, while the inclusive

catalogs cluster around αT ≈ −1 to −0.7. Thus exclusive catalogs suggest that clusters have long survival

times compared to their current ages, while inclusive catalogs imply survival times comparable to cluster

ages. In addition, although this is not shown in the figure, analysis of exclusive catalogs suggests that

more massive clusters have larger values of αT than less massive ones (e.g., Silva-Villa et al. 2014; Adamo

et al. 2017; Messa et al. 2018b), implying that cluster survival time is mass-dependent. A second, more

subtle dependence worth noting is that starburst galaxies seem to have a slight bias toward slopes near

αT = −1 compared to normal spirals and dwarfs – for example, the GOALS galaxies and the Antennae

all have αT . −0.9, while, even for inclusive catalogs, the mean slope for spirals is closer to αT ≈ −0.7.

A similar increase in αT is seen in the centers of massive spirals compared to their outskirts (e.g., Silva-

Villa et al. 2014; Messa et al. 2018a). While such an environmental dependence is in accord with some

theoretical expectations (e.g., Kruijssen et al. 2011), one should be cautious in putting too much weight on

the observations. The regions with steeper αT values are on average more crowded and distant than the

7Piskunov et al. (2018) report cluster density in age bins. To derive the curve shown for αT versus age, we
computed a basis spline fit to their data and calculated the derivative from it. The source code for our calculation
is provided in the Supplementary Material.
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Figure 7

CAF for star clusters within ≈ 2 kpc of the Sun. Points with error bars show measurements from Piskunov et al.
(2018, P18). Lines show χ2 fits to several functional forms, with parameters indicated in the legend: broken

power-law (orange; dN/dT ∝ TαT,1 for log T < log Tb, and dN/dT ∝ TαT,2 for log T > log Tb), Schechter function

(green; dN/dT ∝ TαT e−T/T∗ ), single power-law (faded red; dN/dT ∝ TαT ), and exponential (faded purple;
dN/dT ∝ e−T/T∗ ). The broken power-law and Schechter forms both have reasonable χ2 values, while the other fits

are poor.

systems with shallower αT , and both crowding and distance could create a systematic bias in measured

color that would manifest as a difference in the inferred age distribution.

Milky Way clusters show a complex dependence of αT on age, which we highlight in Figure 7. In

the Milky Way, αT ≈ −0.5 at ages . 109 yr, indicating moderately strong cluster destruction. The age

distribution steepens sharply above ≈ 109 yr, indicating much more rapid disruption. This change in slope

is not seen in the extragalactic samples, which are generally limited to clusters younger than ≈ 108 yr for

reasons of sensitivity. However, there are also two additional cautions to be mentioned in comparing the

Milky Way and extragalactic samples. First, because the Milky Way sample is limited to . 2 kpc from the

Sun, it consists entirely of low-mass clusters (M . 103 M�), while the extragalactic sample is for much

larger masses, M & 103.5 M�. Second, the extragalactic sample ages are derived from photometry, while

the Milky Way ages are based on CMDs, which may lead to systematic differences. CMDs are more reliable

in general, but this might not hold for the Milky Way sample because many of the clusters in it contain only

a small number of stars bright enough to allow placement on the CMD, leading to large age uncertainties.

2.4. Bound mass fraction

A third basic statistic for clusters is the fraction of the total stellar mass in gravitationally-bound clusters,

denoted Γ. Since this fraction changes with stellar age unless αT = 0, Γ in general is a function of T . To

measure Γ one must determine the total mass in bound clusters and the total mass in all stars within the

same age interval. Measuring the former invariably involves some degree of extrapolation to account for

the mass of clusters too small to detect, but for αM ≈ −2 the extrapolation is fairly modest. For the latter

quantity, at ages above ∼ 10 Myr the most reliable means of determining total stellar mass is from CMDs

of field stars. However, these are only available for relatively nearby sources. A second-best option is to

estimate the total stellar mass by multiplying the star formation rate by the length of the age interval,

assuming the star formation rate has been constant. Before proceeding, we note that several authors
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Figure 8

Observational estimates of the bound mass fraction Γ. The top row shows values of Γ taken from exclusive

catalogs, while the bottom row shows inclusive catalogs. In the left column we show Γ as a function of cluster age
T , while in the right column we show it as a function of galaxy star formation rate Σ̇∗. Measurements of Γ in

multiple age ranges for the same galaxy are connected by dashed lines. Faded points indicate measurements that

are potentially dubious: either measurements of Γ at ages < 10 Myr where it is not feasible to separate bound from
unbound systems, or measurements of Γ for ages > 10 Myr in starburst systems where the star formation rate may

have fluctuated on this time scale. In the legend, ♣, ♠, and ♦ stand for SBS0335-052E, ESO338-IG04, and

ESO185-IG13, respectively. References are as follows: G10 = Goddard, Bastian & Kennicutt (2010), A11 =
Adamo, Östlin & Zackrisson (2011), R14 = Ryon et al. (2014), A15 = Adamo et al. (2015), LL15 = Lim & Lee

(2015), J16 = Johnson et al. (2016), C17 = Chandar et al. (2017), M18 = Messa et al. (2018b), G18 = Ginsburg &

Kruijssen (2018).

describe Γ as the “cluster formation efficiency” (e.g., Larsen & Richtler 2000; Bastian 2008; Goddard,

Bastian & Kennicutt 2010; Kruijssen 2012), meaning the fraction of stars formed in bound clusters. This

definition implicitly assumes that one one can cleanly distinguish bound from unbound at all cluster ages,

and that αT ≈ 0 so that Γ is the same when measured for any age range. We have argued neither of these

assumptions is strictly correct, but if one makes them, our more general definition of Γ reduces to theirs.

As with αT , measurements of Γ in the literature span a wide range of values. We summarize the

currently available set of measurements in Figure 8. These data must be examined with extreme caution,

even in comparison to compilations of αM and αT . The most secure measurements, for steadily star-forming

galaxies at ages above ≈ 10 Myr, generally show Γ ≈ 0.01 − 0.1, consistent with the observation that the

majority of early B stars are found outside clusters, as is most of the UV flux (Pellerin et al. 2007). The

low value of Γ at ages & 10 Myr is sometimes referred to as “infant mortality”: essentially all stars are born

in clusters (using our expansive definition of cluster that includes both bound and unbound systems), but

a majority of the stars are not gravitationally bound, so by ages of a few tens of Myr, most stars are not

members of clusters any more.

As shown in Figure 8, a number of authors have reported measurements of Γ at younger ages and in

galaxies undergoing starbursts, and have attempted to deduce trends in Γ with either age (e.g., Chandar

16 Krumholz, McKee, & Bland-Hawthorn



et al. 2017) or star formation activity (e.g., Goddard, Bastian & Kennicutt 2010; Adamo, Östlin & Zack-

risson 2011). We regard such claims as dubious given the methodological uncertainties, and in Figure 8 we

fade the points for which significant methodological concerns exist. With regard to age trends, as pointed

out by Kruijssen & Bastian (2016), estimates of Γ from inclusive catalogs at ages below ≈ 10 Myr are likely

to be heavily contaminated by the presence of non-bound structures that have simply not yet had time to

disperse. Conversely, however, exclusive catalogs may be missing a substantial population of bound but

not yet relaxed clusters at similar ages. Thus Γ estimates at ages below 10 Myr derived from inclusive and

exclusive catalogs should be viewed as upper and lower limits, respectively. An exception is the point from

Ginsburg & Kruijssen (2018) for the Sgr B2 region in the Milky Way’s Central Molecular Zone, for which

the authors check boundedness directly using stellar velocities estimates from the radio recombination lines

of the ultracompact H ii regions around each massive star.

Possible trends in Γ with star formation activity are also potentially contaminated by bias. While Γ

measurements in low-star formation rate (SFR) galaxies tend to be made at ages & 10 Myr to avoid the

issues with inclusive versus exclusive catalogs, measurements for high-SFR galaxies are almost exclusively at

younger ages. This is both because high SFR galaxies also tend to be merging systems, for which measuring

Γ at older ages is problematic because the total SFR may be variable, and because high SFR galaxies are

rare and thus tend to be distant, resulting in a magnitude limit that precludes measurements of Γ at ages

& 10 Myr (Chandar et al. 2017). This means that there is a degeneracy between two possibilities: high

values of Γ in starbursts could be because Γ is in fact larger at higher SFR, but it could equally well be

that Γ is higher at younger ages. The Sgr B2 point from Ginsburg & Kruijssen (2018) does not suffer from

this methodological problem, but also unfortunately does not help break the degeneracy either, because it

has both high SFR and young age. It is unclear to which of these factors its high value of Γ should be

attributed. Consequently, we conclude that there is not yet convincing evidence that Γ varies with either

age or SFR.

IMPROVING PHOTOMETRIC DETERMINATIONS OF CLUSTER PROPERTIES

The preceding sections should make clear that one of the significant uncertainties for CMFs, CAFs, and

Γ are the difficulties of assigning masses and ages to clusters based on photometry. Progress will require

an extensive effort “ground-truthing” photometric property determinations against measurements either

CMDs or spectroscopy. Such a systematic comparison has not been performed since the work of Elson

& Fall (1985, 1988) for the Magellanic Clouds using ground-based data. Much more accurate work with

space-based CMDs should now be possible in both the Clouds and M31 (Johnson et al. 2016). Similarly,

spectroscopy can be used to break the degeneracy between ages of ≈ 5−10 and ≈ 50 Myr from photometry;

spectroscopic measurements of a small sample of ambiguous clusters would at a minimum provide a useful

prior for Bayesian analysis methods that generally return bimodal posterior PDFs when applied to clusters

in the ambiguous parts of color space (Fouesneau et al. 2014; Krumholz et al. 2015a). Unfortunately the

improved infrared photometry provided by the James Webb Space Telescope is likely to be of limited use,

since clusters’ colors in the IR are nearly constant at ages & 6 Myr, when they become dominated by red

giants and supergiants (Gazak et al. 2014).
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2.5. Size and density

In addition to masses and ages, we can also study the physical sizes of star clusters, or equivalently their

densities. The data on the distribution of cluster sizes are more limited than those available for mass or age,

because measuring a size is obviously only possible if the object in question is at least marginally resolved.

While the most physically-meaningful characterization of cluster size and density would be a half-mass

radius or similar description of how mass is distributed, the limited resolution available for galaxies beyond

the Milky Way and its closest neighbors generally precludes measuring anything other than the projected

half-light radius, defined as the projected radius containing half the cluster light. Even this quantity is

difficult to estimate for targets more distant than M31, because many clusters have relatively shallow

light profiles where much of the light is in an extended halo (see § 4.1) that tends to be lost against the

background. For resolved stellar populations, on the other hand, it is usually possible to extract multiple

structural parameters from fits of stellar number counts to theoretically-motivated profiles; see § 4.1 and

Section 1.3.2 of Portegies Zwart, McMillan & Gieles (2010) for a summary of the various size parameters

that can be defined for star clusters. Here we focus on projected half-mass radii (or half-number radii if

masses are not available) from the resolved samples, as these are the closest to what is available from the

photometric size measurements.

Table 2 Summary of masses and radii in current cluster samples

Sample logM [M�]a rh [pc]a log Σ [M� pc−2]a,b Referencec

Milky Way (d < 2 kpc) 1.90+0.51
−0.55 0.58+0.32

−0.20 1.55+0.31
−0.30 K13

M31 (PHAT) 3.18+0.55
−0.55 1.56+0.99

−0.46 1.92+0.59
−0.45 J12, F14

NGC 5236 (M83) 4.20+0.34
−0.15 2.51+1.20

−0.97 2.62+0.56
−0.34 R15

NGC 628 (LEGUS) 4.00+0.40
−0.21 3.09+2.16

−1.18 2.25+0.56
−0.45 R17

NGC 1313 (LEGUS) 4.10+0.39
−0.26 2.69+1.78

−1.67 2.51+0.82
−0.47 R17

M51 4.70+0.30
−0.10 3.89+2.99

−2.63 2.84+0.84
−0.64 C16

M31 GC 5.57+0.84
−0.70 7.41+2.54

−2.11 3.22+0.77
−0.96 B07

Milky Way GC 5.22+0.42
−0.56 3.20+3.88

−1.10 3.39+0.60
−1.06 BH18

M82 SSC 5.72+0.56
−0.28 1.60+0.80

−0.20 4.49+0.26
−0.33 MG07

NGC 253 SSC 5.18+0.32
−0.86 1.27+0.18

−0.32 4.13+0.41
−0.66 L18

Milky Way YMC (> 104 M�) 4.39+0.18
−0.25 1.50+2.35

−0.42 3.21+0.37
−0.97 See Table 3

aThe first number gives the sample median, while plus and minus values indicate the 16th to 84th percentile range; bΣh

is the surface density at the half-mass radius, Σh = M/2πr2h; cReferences are as follows: K13 = Kharchenko et al. (2013),

J12 = Johnson et al. (2012), F14 = Fouesneau et al. (2014), R15 = Ryon et al. (2015), R17 = Ryon et al. (2017), C16 =

Chandar et al. (2016), B07 = Barmby et al. (2007), BH18 = Baumgardt & Hilker (2018), MG07 = McCrady & Graham

(2007), L18 = Leroy et al. (2018).

In Figure 9 we show the mass-radius relation for cluster samples in nearby galaxies, and we summarize

the properties of the cluster samples shown in the Figure in Table 2; for the Milky Way, we have updated

Portegies Zwart, McMillan & Gieles (2010)’s compilation of YMCs in Table 38. The plot reveals a few

notable features. First, there is a mass-radius relation, but it is weak in terms of both slope and tightness.

Cluster radius increases with mass slightly more slowly than rh ∝ M1/3, so that more massive clusters

have mildly higher average density. We refrain from giving a formal fit to the log rh − logM relation,

8Our cluster list is slightly different than Portegies Zwart, McMillan & Gieles (2010)’s compilation. Several from
their list are omitted from our table because more recent observations have reduced their estimated masses below
the threshold of 104 M� commonly used to delineate YMCs, while our list includes several clusters discovered more
recently than their compilation.
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Figure 9

Mass-radius relation for star clusters in nearby galaxies. For Milky Way and globular clusters, we plot half-mass

radii where available, half-number radii otherwise; for all other data sets, we plot half-light radii. Dashed black
lines indicate loci of constant density within rh, with the mass density ρ = 3M/8πr3

h (in units of M� pc−3) and

the corresponding number density n (units of H nuclei cm−3) as indicated; dotted lines show loci of constant

surface density Σ = M/2πr2
h (units of M� pc−2). Hexagonal density plots show the log of the density of clusters in

the (M, rh) plane for Milky Way within 2 kpc of the Sun (data from Kharchenko et al. 2013, K13, with masses

estimated from tidal radii using the method of Piskunov et al. 2007), clusters in M31 from PHAT (radii from

Johnson et al. 2012 and masses from Fouesneau et al. 2014), and clusters in NGC 628, NGC 1313, and NGC 5236
(galaxies grouped together; Ryon et al. 2015, 2017, R15, R17). The low-mass edges in the extragalactic data are a

result of observational limitations, not a physical truncation. Points show individual clusters from smaller samples:

clusters in the disk of M51 (Chandar et al. 2016, C16), GCs in M31 (Barmby et al. 2007, B07) and the Milky Way
(Baumgardt & Hilker 2018, BH18), SSCs in M82 (McCrady & Graham 2007, MG07) and NGC 253 (Leroy et al.

2018, L18), and YMCs from our own compilation (Table 3).

because the results would be highly sensitive to how we weighted the various data sets. Regardless of the

index of the mass-radius relationship, it is clearly very broad, in the sense that, at any given mass, one

can find clusters whose radii vary by a factor of 5; at least some of the spread is undoubtedly the result

of measurement errors. There is no obvious difference in either the breadth or slope of the mass-radius

relation between the inclusive and exclusive catalogs, although a comparison is not straightforward since,

unlike for measurements of αT and Γ, there is little overlap in Figure 9 between measurements carried

out using exclusive versus inclusive catalogs. Second, the distribution is bounded at both large and small

radii. Cluster densities are bounded below by ρ ∼ 1 M� pc−3 (or equivalently n ∼ 30 H cm−3); GCs in

galaxy halos go to only slightly lower densities. On the small radius side, the data appear to be limited to

the region Σ . 105 M� pc−2, as noted previously by Hopkins et al. (2010). Third, there is no separation

between the loci occupied by clusters in galaxy disks and GCs; the two distributions blend continuously

into one another.
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Table 3 Young massive (M > 104 M�) clusters (YMCs) in the Milky Way

logMa ra
h

Name (M�) (pc) Referenceb

Westerlund 1 4.69± 0.045 1.5 G11

Westerlund 2 4.56± 0.035 1.1 Z17

Arches 4.38± 0.17 1.1± 0.61 C12

NGC 3603 4.1± 0.10 1.1± 0.40 HEM08,R10

Quintuplet 4.0 1.0 FMM99

DBS2003 179 4.39 0.2 B08,B12

RSGC01 4.5 1.5 F06

RSGC02 (Stephenson 2) 4.6 2.7 D07

RSGC03 4.45± 0.15 5.0 C09

RSGC04c (Alicante 8) 4.15± 0.15 3.8 N10

RSGC05c (Alicante 7) 4.24± 0.24 3.5 N11

Alicante 10c 4.15± 0.15 4.0 GFN12

aError estimates are given when provided by the referenced source; bReferences are as follows: FMM99 = Figer, McLean &

Morris (1999), F06 = Figer et al. (2006), D07 = Davies et al. (2007), HEM08 = Harayama, Eisenhauer & Martins (2008),

B08 = Borissova et al. (2008), C09 = Clark et al. (2009), R10 = Rochau et al. (2010), N10 = Negueruela et al. (2010),

N11 = Negueruela et al. (2011), G11 = Gennaro et al. (2011), GFN12 = González-Fernández & Negueruela (2012), B12 =

Borissova et al. (2012), C12 = Clarkson et al. (2012), Z17 = Zeidler et al. (2017); cCited reference does not list a radius;

the value we quote is a by-eye fit based on their published images, and should only be considered accurate to the factor of

∼ 2 level.

2.6. Elemental abundances

In systems close enough to permit spectroscopy of individual low-mass stars, we can study the composition

of clusters. The stars in all OCs in the Galaxy are observed to be highly homogeneous (∆[Fe/H] . 0.05

dex) in their abundances of all elements, while no old GCs are fully homogeneous, at least not in their light

elements (Li, C, N, O, F, Na, Mg, and/or Al). Essentially all massive GCs also show an anti-correlation in

certain light elements (e.g., Na-O, Mg-Al; Carretta et al. 2010). Like multiple stellar populations observed

in CMDs, this has become a distinguishing feature of globulars, including for globulars in the Magellanic

Clouds, that is never observed in OCs (e.g., Bragaglia et al. 2017). This difference has led to the view that

GC history is more complex than that of OCs (Gratton, Carretta & Bragaglia 2012). However, there is

a remarkable exception to the rule: the 12-Gyr old, 104.8M� globular Ruprecht 106 appears to be a true

“single stellar population” with homogeneous abundances and no light element anti-correlations (Villanova

et al. 2013); unusually, it is enriched in r-process and s-process elements but does not show the enhanced

[α/Fe] signature of the oldest stars, a characteristic shared by all other Galactic GCs. The globulars Terzan

7 and Palomar 12 also do not have multiple populations and, intriguingly, may be extragalactic through

their association with the disrupting Sgr dwarf. Bragaglia et al. (2017, Table 9) catalog all modern attempts

to detect multiple populations in open and globular clusters.

Typically, the heavy elements (Fe and beyond) in globulars exhibit much less scatter than for the

light elements (e.g. Gratton, Carretta & Bragaglia 2012), except in a few systems (e.g., ω Cen, Terzan

5, M22, NGC 5824) that have unusual properties compared to the general family of clusters. Unusually,

NGC 5824 has ∆[Fe/H] variations of up to 0.3 dex but it also has a remarkable stellar halo with no tidal

truncation detected out to 400 pc in radius, far beyond other clusters (Da Costa, Held & Saviane 2014).

There are numerous other oddities (e.g., Marino et al. 2018): NGC 2419 has a large scatter in K-Mg; some

globulars show s-process variations (e.g., M22, ω Cen), others (e.g. M15) exhibit r-process variations. With

globulars, there are exceptions to every rule. In one particularly deep study of the globular NGC 6752,
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Yong et al. (2013) demonstrate weak inhomogeneities in all elements, even the Fe peak. The existence of

inhomogeneities in globulars may be related to the presence of multiple populations in these systems but

there is no clear association at the present time (Bragaglia et al. 2014). Multiple stellar populations in

globulars are simply not understood (Gratton, Carretta & Bragaglia 2012; Renzini 2013; Bastian & Lardo

2018).

Abundance studies in OCs are more limited. The young OC Hyades is nominally homogeneous (De

Silva et al. 2006, 2011) although a deep study reveals weak variations at the level of 0.02−0.03 dex (Liu

et al. 2016b). The older OC M67 exhibits slightly larger variations (still . 0.05 dex) from a differential

analysis of two fortuitous solar twins (Liu et al. 2016a). To date, all OCs have been shown to be single

stellar populations with a few rare counter claims (e.g., Geisler et al. 2012) refuted in follow-up analysis

(e.g., Bragaglia et al. 2014). The Hyades and M67 clusters have been subject to the most sensitive searches

for abundance variations, so it is plausible that the majority of OCs will be shown to have low-level inhomo-

geneities in future studies. Weak metallicity variations may reflect atomic diffusion in stellar atmospheres

(Dotter et al. 2017; Souto et al. 2018), planetary infall (Meléndez et al. 2017), or simply intrinsic variations

that existed at the onset of star formation (Feng & Krumholz 2014). We return to this point in § 3.6.

2.7. The limits of demography at young ages

Thus far we have discussed the demographics of star clusters without too much worry about the issues raised

in § 1.2 about how one defines a cluster, though our discussion about the differences between inclusive and

exclusive catalogs should already hint at potential problems. We now turn directly to the question: at what

stellar population age does it make sense to treat as meaningful concepts such as the CMF, CAF, and all

the other demographic distributions discussed above?

To answer this question, it is helpful to conduct a thought experiment: consider an annulus within the

Milky Way centered on the Solar Circle, and for every star of age T ±∆T , find its Nth nearest neighbor

(either in 3D or in projection) in the same age range, and plot the distribution of nearest neighbor distances.

Qualitatively, what does this distribution look like? For stars at an age T ∼ 1 Gyr, the answer is fairly

straightforward: almost all stars at this age are field stars, and after 1 Gyr the orbits of these stars through

the Galaxy are thoroughly phase-mixed. Separations therefore follow a Poisson distribution, perhaps with

some overall structure at ∼kpc scales as a result of spiral arms. A small fraction of 1 Gyr-old stars are

members of open clusters, and for these the neighbor distances are much smaller. Consequently, the overall

separation distribution is a Poissonian with an excess at very small separation. Indeed, one sees exactly

this sort of distribution if one plots the distribution of distances between molecular clouds and young star

clusters in external galaxies (e.g., Kawamura et al. 2009). This makes it straightforward to define old

clusters: they are the structures made up of the stars in the small-separation excess.

The results are very different for pre-main sequence stars (selected based on optical colours, infrared

spectral energy distributions, or other methods) with ages T . 10 Myr. The angular correlation function

for these stars is well described as a power-law ξ(θ) ∝ θ−p with p ≈ 0.5 − 1.5 on scales from ∼ 0.01 pc to

∼ 30 pc (e.g., Hennekemper et al. 2008; Kraus & Hillenbrand 2008; Schmeja, Gouliermis & Klessen 2009;

Bressert et al. 2010). The cluster-cluster angular correlation function is a power-law up to ∼kpc scales

(e.g., Elmegreen & Elmegreen 2001; Bastian et al. 2007; Gouliermis et al. 2017; Grasha et al. 2017a,b) –

see Gouliermis (2018) for a comprehensive review. For such distributions, there is no obvious break or

scale that could be used to delineate between cluster and field populations. This presents a challenge for

describing the demographics of star clusters, since it is not obvious how to go about defining the clusters

to begin with.

This situation leads to two main options. One is a Press-Schechter-like approach, whereby one considers

the stellar field smoothed with some characteristic window that defines a size scale. However, there is an
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important difference between our situation and the cosmological one: in cosmology one can compute from

first principles the critical overdensity of ≈ 200 that separates bound and unbound structures, while no such

calculation is available for star clusters (though there are attempts – see § 3.3). Alternately one can simply

appeal to the empirical result that older clusters have a characteristic size ∼ 1− 10 pc, and adopt a similar

averaging scale at younger ages. This is what many authors do implicitly by using clustering algorithms

such as MST that use a free parameter to set the scale. A second approach is to abandon discussion of

cluster demographics entirely for stellar populations . 10 Myr old. One can instead discuss clustering –

i.e., the non-Poissonian distribution of stellar separations, and the correlations between separation in space

and separation in other quantities (age, velocity, elemental abundance, etc.) – rather than discuss the

properties of discrete clusters, an approach previously suggested by Zinnecker (2010). This removes the

need to impose a size scale on a distribution where none is immediately apparent.

As stars age, their separation distribution must evolve from the power-law form seen at young ages

to the Poisson plus small-separation excess form that prevails at older ages. Observations suggest that

much of this evolution happens relatively quickly, over about a crossing time of the relevant size scale (e.g.,

Elmegreen 2000; Grasha et al. 2017b). Thus the type of demographic analysis we have discussed to this

point is sensible as applied to structures more than about a crossing time old. However, from a theoretical

standpoint the question that any successful theory of cluster formation must answer is how the power-law,

scale-free distribution that prevails among young clusters turns into the bimodal distribution that prevails

at older ages, and what determines the demographics of the clustered portion of that bimodal distribution.

In other words, how does stellar clustering turn into star clusters?

3. BIRTH

In this section we examine clusters’ early life, when gas dominates the mass; § 4 covers the gas-free phase.

Here we first review the gaseous initial conditions for star cluster formation (§ 3.1). We then discuss

observational constraints and theoretical models for the rates at which these structures form stars (§ 3.2)

the stellar feedback processes that inhibit this transformation (§ 3.3), and the star formation histories that

result (§ 3.4). We conclude with an attempt to synthesise this material into a coherent model for the

physical properties (§ 3.5) and elemental abundances (§ 3.6) of the final gas-free cluster population.

3.1. Initial conditions for star cluster formation

3.1.1. Giant molecular clouds. Clusters are born in molecular clouds, primarily giant molecular clouds

(GMCs). There is considerable evidence that GMCs obey several relations discovered by Larson (1981):

(1) The 1D velocity dispersion, σ, is supersonic and varies with size L as σ ∝ Lp, where p ≈ 0.5 in the

Galaxy (Solomon et al. 1987; Falgarone, Pety & Hily-Blant 2009); (2) GMCs have roughly equal kinetic

and gravitational potential energies, indicating that they are bound or nearly so; (3) the column density

N ≈ nL (or, equivalently, the mass surface density Σ = M/πR2) is approximately constant within a given

galaxy. As Larson pointed out, only two of these are independent. To see this, note that the degree of

gravitational binding can be measured by the virial parameter, αvir ≡ 5σ2R/GM , which is unity for a sphere

of constant density in virial equilibrium with no surface pressure; such a sphere is bound if it has αvir < 2

(Bertoldi & McKee 1992, who also considered non-spherical clouds). This definition can be rewritten as

σ =
√

(π/5)GαvirΣR. Thus bound clouds (αvir ∼ 1) with the same surface density, Σ, automatically satisfy

σ ∝ R1/2. In terms of the virial parameter, the ratio of the crossing time tcr = R/σ to the free-fall time is

tcr/tff ≈ 2/α
1/2
vir .

Observations of molecular gas since Larson (1981)’s work have generally confirmed his findings. For the

linewidth-size relation, Solomon et al. (1987) found σ = 0.72R0.5
0 km s−1, where R0 = R/(1 pc), in their
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survey of GMCs in the first Galactic quadrant. Falgarone, Pety & Hily-Blant (2009) compiled observations

of molecular gas in the Milky Way and found σ ∝ R0.5 within a factor 3 over the size range 0.1 to > 100

pc. Subsequent observations of Galactic (Rice et al. 2016; Miville-Deschênes, Murray & Lee 2017) and

extragalactic (Bolatto et al. 2008; Faesi, Lada & Forbrich 2018) molecular gas are generally consistent with

the Solomon et al. (1987) result. Faesi, Lada & Forbrich (2018) attribute the absence of a clear linewidth-

size relation in some extragalactic observations to low spatial resolution. Finally, we note that the value

p ≈ 0.5 is expected for supersonic turbulence on theoretical grounds and has been seen in many simulations

(e.g., Padoan et al. 2014).

One can determine if a cloud is gravitationally bound by comparing the “turbulence parameter” C ≡
σ/R1/2 to the surface density Σ (Keto & Myers 1986):

αvir =
3.70C2

Σ2
, (2)

where C is in units of km s−1 pc−1/2 and Σ2 = Σ/(100M� pc−2) (c.f. Bolatto et al. 2008). The results of

Solomon et al. (1987) for GMCs in the inner Galaxy (C = 0.72 km s−1 and Σ2 = 1.7) imply αvir ≈ 1.1, and

they concluded that these GMCs are bound. Heyer et al. (2009) and Roman-Duval et al. (2010) confirmed

this, the former by plotting C vs. Σ from 13CO observations of the inner Galaxy. Sun et al. (2018) were

able to determine the virial parameter for the clouds in the different galaxies by measuring surface density

and line width at a fixed linear scale. They found αvir on the scale R = 60 pc between 1.3 and 3.2 in all

galaxies but M31 and M33 (where they were larger), showing that the clouds are bound or nearly bound.

Visual inspection of their results shows that αvir is almost always close to unity for the clouds with the

highest surface densities. For a cloud to be bound, it must also be able to avoid tidal disruption. For a

flat rotation curve, this requires that the mean cloud density exceed twice the mean density of the galaxy

inside the orbit of the cloud (Chernoff & Weinberg 1990), or ρ̄ > 5.4 (vc,220/Rkpc)2 M� pc−3, where vc,220

is the circular velocity in units of 220 km s−1, and Rkpc is the distance to the center of the galaxy in kpc.

Larson’s third relation, the constancy of the surface density of GMCs in the inner Galaxy (excluding

the Galactic Center), was confirmed by Solomon et al. (1987), who found 〈Σ〉 = 170M� pc−2 and by

Roman-Duval et al. (2010), who concluded that 〈Σ〉 = 140M� pc−3. (However, clouds with M <∼ 104 M�
can have lower Σ – Heyer, Carpenter & Snell 2001 – and there can be systematic large-scale variations of

the surface density within GMCs – Schneider et al. 2015.) Different galaxies have different surface densities:

in a study of 15 disk galaxies, Sun et al. (2018) found that median surface density at 120 pc resolution

ranged from about 10 to 200M� pc−2 excluding the Antennae, for which it is 2300M� pc−2. The variation

in Σ for the normal galaxies could reflect variations in the beam filling factor of GMCs as well as variations

in the intrinsic properties of GMCs (Lada et al. 2013). The dispersion in these values within individual

galaxies is about ±0.4 dex.

The surface density of a GMC is directly related to both its internal pressure and the pressure exerted

on its surface, and insofar as Σ is constant within a galaxy, these pressures tend to be also. The turbulent

pressure within a self-gravitating cloud is

P̄turb ≡ ρ̄σ2 ≡ 3π

20
αvirGΣ2

GMC, (3)

for spherical clouds (e.g., McKee & Tan 2003), so that P̄turb/kB = 1.0 × 105αvirΣ
2
2 K cm−3. This should

exceed the external pressure, Pext, and indeed Hughes et al. (2013) found that P̄turb ∼ (1 − 8)Pext in the

eight galaxies they studied. For a typical GMC in the Milky Way, with ΣCO ∼ 140M� pc−2, one finds

that the surface pressure on the CO cloud is comparable to the mean turbulent pressure inside the cloud.

On the other hand, for GMCs in high pressure environments, such as galactic nuclei or starbursts, the
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surface density must be large in order for the cloud to be self-gravitating: the virial theorem implies that

αvir ∼ (1−Pext/P̄ )−1 in the absence of strong magnetic fields (Bertoldi & McKee 1992), so the requirement

that αvir ∼ 1 implies Σ >∼ 2(Pext/G)1/2. High pressures also imply high volume densities: the mean density

in a cloud is

ρ̄GMC =
3

4

(
πΣ3

2

M6

)1/2

M� pc−3 =
179

α
3/4
vir M

1/2
6

(
P̄turb/kB

108 K cm−3

)3/4

M� pc−3 (4)

where the final step follows because for a non-spherical cloud Σ ≈M/V 2/3 has the value as for a spherical

cloud of the same volume, V , and Pturb
>∼ 2Pext for bound clouds.

3.1.2. Clumps and clusters. Clusters are born in density concentrations (clumps) within GMCs. Both the

GMCs and the clumps within them are supersonically turbulent. In the absence of self-gravity and for

an approximately isothermal equation of state, this turbulence leads to a log-normal density distribution

(e.g., McKee & Ostriker 2007) and a corresponding log-normal distribution of surface densities (Brunt,

Federrath & Price 2010). Self-gravity leads to the formation of a power-law tail in the PDF for dense

gas (Collins et al. 2012). This has been observed in the PDF of surface densities in a number of GMCs,

dP/d log Σ ∝ Σ−(2±0.7) for clouds with active star formation; this is often associated with an overall power-

law density distribution in the cloud (Lombardi, Alves & Lada 2015; Schneider et al. 2015). The clumps in

GMCs are formed by the combined action of supersonic turbulence and self-gravity. Equation 2 implies that

the typical surface density of a bound clump within a bound GMC (each of which therefore has αvir ≈ 1)

is about the same as that of the GMC, or Σclump ∼ 100M� pc−2 in the Galaxy. Observational studies

of clumps have been carried out only for the Galaxy. Analyzing the results of the APEX 870 µm survey

of the Galactic plane (excluding the central ±5◦ in longitude), which was complete for Σ > 700M� pc−2

and M > 1000M� within 20 kpc, Urquhart et al. (2018) found about 107 M� in 8000 dense clumps.

A by-eye fit to their data on the surface densities of the clumps gives dNclump/d log Σ ∝ Σ−1.6 over the

range Σ = 600 − 6000M� pc−2; the median surface density is about 700M� pc−2 and the maximum is

about 3 × 104 M� pc−2. The clumps are gravitationally bound with αvir ∼ 0.1 − 1; Kauffmann, Pillai

& Goldsmith (2013) and Tan et al. (2013) have suggested that magnetic fields could provide support for

sub-virial clumps. At high masses, the clump mass distribution has αM, clump ≈ −2 (indeed, Heithausen

et al. 1998 found αM, clump = −1.84 over 5 decades in mass) and has an upper limit of about 105 M�. In

the Galaxy, the GMCs out of which the clumps form have a power-law mass with αM,GMC ≈ −1.6, so

that most of the mass of GMCs is in massive clouds. This distribution is truncated at about 107 M� (Rice

et al. 2016 and references therein, but see Miville-Deschênes, Murray & Lee 2017 for a different view), as

expected theoretically from the Jeans mass of the galactic disk (i.e., the Jeans mass expressed in terms of

the gas surface density, Σgal; Kim & Ostriker 2001),

MJ =
σ4

G2Σgal
= 107

(
σ

7 km s−1

)4(
13M� pc−2

Σgal

)
M�. (5)

If the Toomre Q-parameter, Q = κσ/(πGΣ) ∼ 1, where κ is the epicyclic frequency, this is about the

maximum mass expected for a bound cloud, so in the Galaxy the most massive dense clump is about 1%

of the mass of the most massive GMC.

Observations of GMCs in external galaxies show that in some, but not all, cases the mass distribution

can be described by a truncated power law with most of the mass in the most massive clouds, as observed

in the Galaxy: this describes the GMCs in NGC 300 (Faesi, Lada & Forbrich 2018) and those in the

inner region and in the spiral density waves of M51, but not the GMCs in the rest of the galaxy, where

αM,GMC < −2, so that low-mass clouds contain most of the mass (Colombo et al. 2014). In the regions
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of M51 in which αM,GMC > −2, the upper limit on the mass distribution is similar to the Galactic value,

∼ 107 M�.

The conditions required to produce massive clusters, such as globular clusters, occur in interacting

galaxies such as the Antennae (e.g., Whitmore et al. 2014), dwarf irregular galaxies, some of which are

starbursts and many of which show signs of interaction (Billett, Hunter & Elmegreen 2002), and nuclear

starbursts in spiral galaxies such as NGC 253 (e.g., Leroy et al. 2018). Such conditions are rare now, but

were common at redshifts z >∼ 2 (Kruijssen 2014). A detailed survey of the GMCs in the Antennae galaxies

has yet to be made, but Wilson et al. (2000) carried out a low-resolution (∼ 300 × 500 pc) survey of this

system and identified five large molecular cloud complexes with masses in excess of 108 M�; the largest one

not associated with one of the galactic nuclei had a mass of 6× 108 M�. By contrast, Wilson et al. (2003)

pointed out that the most massive molecular cloud complex in M51 had a mass about 10 times less. They

suggested that the interaction of the galaxies produced regions of less shear, which enables the existence

of more massive GMCs; Billett, Hunter & Elmegreen (2002) emphasized the importance of low shear in

producing more massive clusters in dwarf irregular galaxies. For disk galaxies, we can express the Jeans

mass (Equation 5) in terms of the Toomre Q-parameter, so that

MJ =
π4G2Σ3Q4

κ4
= 2500

Σ3
2Q

4
1.5

Ω4
0

M�, (6)

where in the second expression a flat rotation curve has been assumed, Q has been normalized to a typical

critical value, and Ω0 is measured in units of Myr−1 (Krumholz & McKee 2005). Hence, if Q self-regulates

to be of order unity, a reduction in the epicyclic frequency, κ, by a factor 2 due to the effect of the interaction

can increase the maximum GMC mass by more than an order of magnitude. More massive GMCs enable

the production of more massive clumps (Harris & Pudritz 1994; Reina-Campos & Kruijssen 2017); Johnson

et al. (2015a) have observed a clump in the Antennae with a mass of at least 5× 106 M� and a radius less

than 24 pc, corresponding to Σ >∼ 3000M� pc−2 and P̄turb/kB
>∼ 108 K cm−3.

The maximum possible mass of a cloud that forms by gravitational instability in a disk is MGMC,max '
(λT/2)2Σ, where λT = 4π2GΣ/κ2 is the Toomre length (Escala & Larson 2008). Disks are stable for

Q >∼ 1.5 (Kim & Ostriker 2001), and the Jeans mass (eq. 6) at Q = 1.5 is close to MGMC,max. If the disk

has a total mass (including stars and dark matter) inside a radius R of Mtot(< R), a gas mass inside R of

Mg(< R) ' πR2Σ and it is rotationally supported, then

MGMC,max

Mg(< R)
' 4π

(κ/Ω)4

[
Mg(< R)

Mtot(< R)

]2

: (7)

the maximum fraction of the gas that can go into a single GMC scales as the square of the gas fraction. As

a result, more massive GMCs, and therefore more massive cluster-forming clumps, are expected in gas-rich

regions such as galaxies in the process of formation and in starbursts (Escala & Larson 2008).

Galaxy interactions also produce shocks that can compress clouds. A collision at a relative velocity

vrel produces radiative shocks with a velocity vrel/2 and a pressure P = ρ0(vrel/2)2, corresponding to

P/kB = 3.8× 106nH,0(vrel/300 km s−1)2. This leads to localized regions of very high pressure when clouds

collide, P/kB ∼ 108 K cm−3 (Jog & Solomon 1992), but only ∼ 106 K cm−3 for shocks in the intercloud

medium, which is not that much larger than the typical pressure in Galactic GMCs.

Based on this summary of the observed properties of molecular gas in galaxies, we have the following

expectations for the gaseous precursors of star clusters currently forming in the Galaxy: clusters form from

clumps with masses ranging from very small values (depending on the star formation efficiency) up to about

105 M� and surface densities from ∼ 100M� pc−2 up to about 3 × 104 M� pc−2. A substantial fraction

of the clouds are bound (αvir
<∼ 2). The typical clump has a column density comparable to that of the
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cloud in which it is embedded. For a clump mass of 103 M� and a typical GMC pressure corresponding to

ΣGMC = 140M� pc−2, namely Pturb/kB ∼ 2×105 K cm−3, the density is about 50M� pc−3. Clumps have a

distribution of surface densities extending to higher values, and the mean density of a clump at a given mass

scales as Σ
3/2
clump (Equation 4). Conditions in nearby spiral galaxies do not differ substantially from those

in the Milky Way. These conditions are consistent with the production of the OCs observed in the local

universe, but not of GCs, which are far more massive than the clumps observed in the Galaxy. Molecular

clouds that can produce globulars are seen in interacting galaxies like the Antennae, dwarf starbursts such

as He 2-10 (Johnson et al. 2018), and nuclear starbursts (Leroy et al. 2018), and are expected in any disk

with a high gas fraction (as observed in galaxies at high redshift – Genzel et al. 2011) or a small epicyclic

frequency (as observed in interacting and dwarf irregular galaxies).

3.2. Conversion of gas to stars

tff : free-fall time, the

natural evolutionary
timescale for a

self-gravitating

system

εff : the fraction of a

cloud’s mass that is
transformed into

stars per cloud

free-fall time

ε∗: the fraction of a

cloud’s initial mass

that is transformed
into stars by the

time all the initial

gas has been been
consumed or ejected;

sometimes called the

star formation
efficiency, though we

will mostly eschew

this term to
minimize confusion

with εff

tsf : timescale over
which conversion to

stars occurs:
ε∗ ≈ εff(tsf/tff)

η: mass loading

factor: ratio of mass
ejected by star

formation feedback

to mass converted to
stars

The collapse of molecular clouds eventually produces stars. Here we review only those aspects of this

process most relevant to star clusters; for a more general treatment see the reviews by McKee & Ostriker

(2007) and Krumholz (2014). The CMF and the production of bound clusters depend strongly on the

efficiency with which gas is converted into stars. Efficiency can be defined in multiple ways, which we can

illustrate in an idealized example: a cloud of initial mass M and free-fall time tff forms stars at a rate

Ṁ∗. At any given time, the remaining gas mass is Mg and the mass of stars formed is M∗, and we can

parametrize the relationship between the star formation rate, current gas mass, and free-fall time as

Ṁ∗ = εff
Mg

tff
, (8)

where εff is one of the efficiencies we will define. A region in free-fall collapse with nothing inhibiting star

formation has εff ≈ 1. In addition to gas consumption by star formation, feedback from stars launches

a wind at a rate Ṁw, which we normalize to the star formation rate by defining the mass loading factor

η = Ṁw/Ṁ∗. With these definitions, we have

Ṁg = − (1 + η) εff
Mg

tff
. (9)

All the factors that appear in this equation – η, εff , or tff – can depend on Mg, M∗, time, or any

number of other variables. Moreover, real clouds are not closed boxes with a fixed initial mass; there is

certainly mass inflow occurring simultaneously with star formation (see “Conveyor-Belt Model for Cluster

Formation” in the Supplementary Materials). Indeed, nothing in our formulation even requires that clouds

be bound – Mg may can include both bound and unbound material. For the purposes of illustration,

however, we can ignore these complications and treat η, εff , and tff as constant, in which case it is trivial

to write down expressions for the instantaneous gas and stellar masses:

Mg

M
= e−t/tsf

M∗
M

=
1− e−t/tsf

1 + η
≡ ε∗

(
1− e−t/tsf

)
tsf ≡

ε∗
εff
tff . (10)

These equations provide another definition of the star formation efficiency: ε∗, the fraction of the initial

cloud mass that has been transformed into stars once all the gas is consumed. In this idealized problem,

ε∗ = 1/(1 + η). The term tsf we have introduced defines the characteristic timescale for star formation, i.e.,

M∗/M reaches its final value of ε∗ on a timescale tsf . In this section we discuss εff , and in the next two

sections we examine ε∗ and tsf .
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3.2.1. Observational constraints on εff . The value of εff is well constrained by observations. Formally, for

any specified region of volume V containing a gas mass Mg, we have εff = Ṁ∗/[Mg/tff(ρ̄)], where Ṁ∗ is

the instantaneous star formation rate within V , tff(ρ̄) =
√

3π/32Gρ̄ is the free-fall time as a function of

density, and ρ̄ = Mg/V is the mean density of the region in question. There are several methods available to

estimate these quantities. The most direct is to define a column density or extinction threshold, estimate the

mass within that threshold, calculate the density and thus the free-fall time from the mass and projected

area (assuming the unseen third dimension is comparable in size to the two observed dimensions), and

estimate the star formation rate by counting young stellar objects (YSOs) and estimating their masses

and the duration of the YSO phase (Krumholz, Dekel & McKee 2012; Federrath 2013; Evans, Heiderman

& Vutisalchavakul 2014; Salim, Federrath & Kewley 2015; Heyer et al. 2016; Ochsendorf et al. 2017; also

see Heiderman et al. 2010; Lada et al. 2013). All published studies using this method rely on data from

Spitzer, which was only sensitive enough to detect ∼ 1 M� YSOs within a few kpc of the Sun, and massive

YSOs out to the distance of the Magellanic Clouds. Consequently, this method is only available out to

the Magellanic Clouds, and studies that go beyond the Solar neighborhood must make a correction for the

unseen part of the IMF.

A second approach, usable throughout the Milky Way and its satellites, is to match catalogs of star-

forming regions identified by tracers such as infrared or free-free emission with catalogs of molecular clouds

identified by CO or dust emission, matching them up if they are sufficiently close in position or velocity, and

then using the mass, free-fall time, and star formation rates of the matched clouds and star-forming regions

to estimate εff (Vutisalchavakul, Evans & Heyer 2016; Lee, Miville-Deschênes & Murray 2016; Ochsendorf

et al. 2017). A third approach, available for extragalactic systems with extensive molecular gas and star

formation tracer maps, is simply to pixelize the entire galaxy, and estimate masses, densities, and free-fall

times in each pixel (Krumholz, Dekel & McKee 2012; Leroy et al. 2017; Utomo et al. 2018). A fourth

method is to observe tracers of dense gas, most commonly HCN, and correlate these with tracers of star

formation (e.g., Krumholz & Tan 2007; Garćıa-Burillo et al. 2012; Hopkins et al. 2013; Usero et al. 2015;

Gallagher et al. 2018). For this method there is no need to spatially resolve the emission, because the

molecule itself determines the density and free-fall time; e.g., Onus, Krumholz & Federrath (2018) show

that the luminosity-weighted mean density of HCN line-emitting gas is ≈ 104 cm−3.9

We summarize recent observational constraints on εff in Figure 10. Comparing the various methods,

we see that essentially all studies based on YSO counting or HCN give εff ≈ 0.01, with a study-to-study

dispersion of ≈ 0.3 dex, and a dispersion of about 0.3− 0.5 dex within any single study. This dispersion is

probably an upper limit, since it includes both the true physical dispersion and the effects of measurement

errors. Pixel statistics produce a similar dispersion, but with a median 0.3− 0.5 dex lower. However, these

results are still consistent because there are systematic uncertainties in all the methods at the ∼ 0.5 dex

level. For pixel statistics one must assume a value for the poorly-constrained line of sight depth through the

target galaxy. For YSO counting, one must estimate the duration of the phase during which newly-formed

stars would be classified as YSOs, the volume density of the gas seen only in projection, and the IMF

correction. For HCN, there is uncertainty in the mean density of the emitting gas and the emissivity per

unit mass, which is needed to estimate the total mass.10

The cloud matching studies disagree with the other three methods, yielding much larger dispersions

9A fifth and final method is available for the special case of the Milky Way’s Central Molecular Zone (CMZ),
where one can use the positions of clouds and star clusters around their orbit through the CMZ as an absolute clock
to time the transformation of gas into stars (Barnes et al. 2017). Since this method is applicable only to the CMZ
we will not discuss it further.

10Figure 10 uses the Onus, Krumholz & Federrath (2018) calibration, which is intermediate between the alternative
Kauffmann et al. (2017) and Gao & Solomon (2004) estimates.
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Figure 10

Compilation of εff measurements, grouped by method. Each histogram shows the distribution of εff values measured

in a single study. Points and error bars show the median and the 16th to 84th percentile; numerical values are
printed in each panel. In panels with two histograms, the colored one is the distribution including non-detections

plotted at their 2σ upper limits, while the gray histogram shows the distribution omitting non-detections; median

and percentile values are for the colored distribution. The vertical dashed lines at log εff = −2 are to help guide the
eye. References are as follows: W10 = Wu et al. (2010), L13 = Lada et al. (2013), E14 = Evans, Heiderman &

Vutisalchavakul (2014), U15 = Usero et al. (2015), H16 = Heyer et al. (2016), L16 = Lee, Miville-Deschênes &

Murray (2016), V16 = Vutisalchavakul, Evans & Heyer (2016), S16 = Stephens et al. (2016), L17 = Leroy et al.
(2017), O17 = Ochsendorf et al. (2017, appears twice, because this study used two independent methods), G18 =

Gallagher et al. (2018), U18 = Utomo et al. (2018). All values of εff are as reported by the authors of the study,

except that we have derived εff for the Lada et al. (2013) sample following Krumholz (2014), and we have
homogenized εff from the HCN data sets to the calibration of Onus, Krumholz & Federrath (2018).

and mostly higher medians. The main difference between cloud matching and the other methods is that

cloud matching does not require that the star formation and gas tracers be co-spatial, which makes the

results sensitive how one constructs and matches catalogs of clouds and star-forming regions; the 0.8 dex

difference in median εff values derived by Vutisalchavakul, Evans & Heyer (2016) and Lee, Miville-Deschênes

& Murray (2016) is almost entirely due to this sensitivity, since the regions they target and the underlying

data sets they use are nearly identical. To gain more insight into why cloud matching differs from other

methods, it is helpful to examine the study of Ochsendorf et al. (2017), who use both YSO counting and

cloud matching to derive εff values for the same molecular gas map of the LMC.11 For YSO counting, they

adopt the standard approach of counting YSOs within the same contours used to define clouds, while for

cloud matching they decompose an Hα map into H ii regions and match clouds and H ii regions if there is

any spatial overlap. We show the distribution of εff values produced by the two methods in the left panel

11Ochsendorf et al. (2017) analyze both a dust-based molecular cloud map from Jameson et al. (2016) and a CO-
based map from Wong et al. (2011). We focus on the dust-based map because, due to the LMC’s low metallicity, is
contains substantial amounts of CO-dark molecular mass.

28 Krumholz, McKee, & Bland-Hawthorn



−3.0 −2.5 −2.0 −1.5 −1.0 −0.5
log εff

0.0

0.2

0.4

0.6

0.8

1.0

C
D

F

YSO counting

Cloud matching

30 Dor

84.0◦84.5◦85.0◦85.5◦

RA (J2000)

-69.3◦

-69.2◦

-69.1◦

-69.0◦

-68.9◦

-68.8◦

D
E

C
(J

2
0
00

)
100 pc

Figure 11

Left: cumulative distribution of εff values measured in the study of Ochsendorf et al. (2017) by YSO counting

versus cloud matching, both using the Jameson et al. (2016) H2 map. The star shows the 30 Doradus region. For

the YSO counting method, the blue band indicates the uncertainty range associated with non-detections, with the
lower value corresponding to assuming that clouds without YSO detections have star formation rates at the

sensitivity limit, and the upper value corresponding to assuming that such regions have star formation rates of zero.

Right: zoom-in on the 30 Doradus region, reproduced from Ochsendorf et al. (2017) by permission of the AAS.
Grayscale shows the H2 column density, black contours show CO clouds from the catalog of Wong et al. (2011), red

triangles show the positions of massive YSOs, with size indicating inferred mass (Ochsendorf et al. 2016), and blue

contours show H ii regions.

of Figure 11.

Clearly cloud matching yields a broader distribution with a higher median. To understand why, we can

look at the example of the 30 Doradus region (indicated by the star in the left panel of Figure 11) for which

YSO counting gives εff = 0.065, while cloud matching gives εff = 0.38, a factor of 6 larger. Since the same

GMC properties are used in both estimates, the difference arises solely from the imputed star formation

rate. Examining the right panel of Figure 11, it is clear how a substantial difference could arise: while the

great majority of the YSOs are within the footprint of the cloud, there is significant Hα emission that is

not, but that partly overlaps it. Treating all this emission as if it comes from the cloud causes the cloud

matching method to infer a much larger star formation rate. This emission could indeed be associated with

the existing molecular cloud, but it could also be associated with molecular gas that has been dispersed or

displaced by stellar feedback.

Similar effects are also apparent in other galaxies. For example, in a survey of NGC 628 at ∼ 50 pc

resolution, Kreckel et al. (2018) identify ≈ 1500 H ii regions and ≈ 750 GMCs, but find < 100 overlaps

between the two. Naive application of a cloud matching method to this data set would lead one to conclude

that most GMCs are inert and have εff = 0, while most H ii regions formed with εff � 1, an obviously

unphysical result. The data are better explained by the hypothesis that bright H ii regions rapidly disperse

or displace the molecular clouds in which they form. In principle it should be possible to account for this

effect and extract corrected estimates of εff from the statistics of the GMC-H ii region correlation (Kruijssen

et al. 2018), but this method has not yet been widely applied.

This analysis suggests that cloud matching-based estimates of εff should be treated with caution. Given
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THE FUTURE OF YSO COUNTING

YSO counting is the most reliable method of estimating εff , but at present it is limited by the sensitivity

and angular resolution of Spitzer, the telescope used for all existing YSO counting studies. With Spitzer, the

only YSOs we can reliably detect beyond the Milky Way have masses & 8 M� (Ochsendorf et al. 2016). This

sensitivity limit is responsible for the large uncertainty in the shape of the low end of εff distribution shown

in Figure 11. However, the James Webb Space Telescope will be far more sensitive and have significantly

better angular resolution. With JWST it will possible to detect ≈ 1 M� YSOs in the Magellanic Clouds,

and to obtain YSO catalogs comparable to those currently available for the LMC and SMC out to M31 at

least, possibly farther. This will greatly improve cloud-scale measurements of εff beyond the Milky Way.

the reasonable consistency in results produced by the other methods, we conclude that the preponderance

of the current observational evidence favors εff ≈ 0.01 for regions & 1 pc in size, with a dispersion of . 0.5

dex and a comparable level of systematic uncertainty.

3.2.2. Theory of εff . The observed value of εff is surprisingly low, and a number of authors have proposed

theoretical models aimed at explaining it. The earliest models relied on magnetic regulation of star for-

mation. Interstellar gas is magnetized, and if the field strong enough it can prevent gas from collapsing

until non-ideal magnetohydrodynamic effects reduce the magnetic flux threading the gas. However, more

recent measurements of magnetic fields have generally shown that they are too weak to support the gas –

see Crutcher (2012) for a review. Consequently, attention has focused on three possibilities: εff may be low

because clouds are not bound, because they are turbulent, or due to feedback.

Unbound cloud models propose that εff is low because most of the material observationally-defined as

molecular clouds is not in fact self-gravitating (e.g., Dobbs, Burkert & Pringle 2011; Meidt et al. 2018).

We have argued in § 3.1.1 that the bulk of the evidence does not support this view, but if it were the case

that only ∼ 1% of the mass in a molecular cloud were bound, this would naturally explain why εff ≈ 1%.

While this is a potentially-viable explanation for the low εff values of GMC as traced by CO, most of the

observations compiled in § 3.2.1 are for the much denser gas traced by HCN, or by the YSO counting

studies, which is almost certainly bound (e.g., Kauffmann, Pillai & Goldsmith 2013). The unbound cloud

hypothesis does not explain why this gas also shows low εff .

Turbulent regulation models propose that εff is low because star-forming gas is turbulent enough to

render most sub-regions of a molecular cloud unbound, even if that cloud is bound on its largest scales.

Qualitatively the argument stems from the linewidth-size relation discussed in § 3.1: since velocity dispersion

varies with size as σ ∝ R1/2, then the kinetic energy per unit mass contained within a region of size R

scales as eK ∝ R, while the binding energy per unit mass of a region of mass M scales as eG ∝ GM/R.

If one chooses a region close to the mean density then M ∝ R3 and eG ∝ R2. Consequently, for a

randomly-chosen sub-region of a cloud, the virial ratio obeys αvir ∝ 1/R, and thus most regions smaller

than an entire cloud are unbound. This argument can be made quantitative by integrating over the density

PDF. The earliest version of such an argument appeared in Krumholz & McKee (2005), but this has been

superseded by numerous later works that model the density PDF and the evolution of its self-gravitating

parts with increasing accuracy (Padoan & Nordlund 2011; Hennebelle & Chabrier 2011; Padoan, Haugbølle

& Nordlund 2012; Federrath & Klessen 2012; Hopkins 2013; Burkhart 2018; Burkhart & Mocz 2018).

The consensus of recent models is that turbulence does substantially reduce εff , but not all the way to

εff ≈ 0.01 as required by the observations. As time goes by the density PDF of a self-gravitating cloud
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deviates develops an increasingly-prominent power-law tail on its high-density end that causes εff to rise

with time (Murray & Chang 2015; Burkhart 2018). This density build-up is most likely counteracted by

localized feedback processes that break up high-density regions and suppress the growth of the power-law

tail; the most likely mechanism for this is protostellar outflows, since stars begin to launch outflows as soon

as they form, and even low-mass stars can produce significant outflow feedback. Modern simulations that

include both protostellar outflows and magnetic fields12 that help couple them to gas are able to achieve

values of εff that, while still a factor of 2− 3 too high compared to the consensus observational value, are

approaching agreement with the data (Wang et al. 2010; Myers et al. 2014; Federrath 2015; Cunningham

et al. 2018). An alternative possibility is that cloud disruption by feedback is so fast and efficient that

typical clouds never have time to develop power-law tails extensive enough to drive εff to large values

(Grudić et al. 2018).

A final caveat on theoretical explanations for the low value of εff is that turbulent regulation is effective

only if the gas is actually turbulent. There is significant debate in the literature about whether the observed

large linewidths of molecular clouds should be interpreted as turbulence, or whether they might represent

coherent gravitational collapse (e.g., Heitsch, Ballesteros-Paredes & Hartmann 2009; Ballesteros-Paredes

et al. 2011; Zamora-Avilés, Vázquez-Semadeni & Coĺın 2012; Traficante et al. 2018). While there is signifi-

cant evidence from both analytic theory (Klessen & Hennebelle 2010; Goldbaum et al. 2011) and numerical

simulations (Robertson & Goldreich 2012; Lee & Hennebelle 2016a,b; Birnboim, Federrath & Krumholz

2018) that accretion flows invariably drive turbulence, and recent kinematic measurements with Gaia also

appear to disfavor the idea that GMCs are in global collapse (§ 3.4.2), the question is not settled.

3.3. Feedback and the termination of star formation

The final star formation efficiency, ε∗, depends both on εff and on the ability of stellar feedback to eject

gas from nascent star clusters. Unfortunately we cannot measure ε∗ for individual clouds directly, because

for a single region we cannot measure both the gas mass at the onset of star formation and the stellar

mass at its conclusion. One can attempt to measure the mass-loading factor η, but this is technically very

challenging (see Yang et al. 2018 for a recent attempt). The best prospect for measuring ε∗ is likely the use

of statistical methods to analyze populations of clouds (Kruijssen et al. 2018), but thus far measurements

using this technique are not widely available. For these reasons, estimates of ε∗ come primarily from theory.

In the remainder of this section we follow the approach taken by several previous authors (e.g., Matzner

2002; Fall, Krumholz & Matzner 2010; Matzner & Jumper 2015; Rahner et al. 2017) by considering a variety

of feedback mechanisms and attempting to determine under what circumstances they become relevant. We

summarize these findings in Figure 12.

3.3.1. Protostellar outflows. Bally (2016) provides a comprehensive recent review of protostellar outflows,

so we focus only on the details most relevant for star cluster formation. Outflows are critical to breaking up

dense regions and thus keeping εff small because they eject ∼ 2/3 of the mass from individual protostellar

cores (e.g., Matzner & McKee 2000; Offner & Chaban 2017). However, this mass is ejected at relatively

low velocities, and thus may not escape the larger-scale protocluster. For this reason, theoretical models

(e.g., Matzner & McKee 2000; Matzner & Jumper 2015), numerical simulations (e.g., Wang et al. 2010;

Krumholz, Klein & McKee 2012; Murray, Goyal & Chang 2018), and observations (e.g., Nakamura & Li

2014; Li et al. 2015; Plunkett et al. 2015) all suggest that outflows have a limited role in setting final

12Non-MHD simulations find that outflows are much less effective at lowering εff , since without magnetic fields
outflows couple poorly to the bulk of the material (e.g., Krumholz, Klein & McKee 2012; Murray, Goyal & Chang
2018).
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Figure 12

Star cluster mass-radius relation, showing the same data as Figure 9, with shaded regions indicating where various

feedback mechanisms are potentially significant. In constructing this diagram, we have for simplicity considered the
case of star-forming clouds where the gaseous and stellar components have comparable masses and radii, but we

emphasize that in reality this need not be the case. The feedback mechanisms shown are outflows (§ 3.3.1),

supernovae (SNe; § 3.3.6), direct radiation pressure (DR; § 3.3.3), ionization (§ 3.3.2), and indirect radiation
pressure (IR; § 3.3.4). Shaded regions fade at masses below which stochastic sampling of the IMF makes them

unlikely to be active (§ 3.3.1). For all feedback types except IR, the region where the mechanism is effective is to

the left of and above the line.

star formation efficiencies in most clusters. There has yet to be a comprehensive numerical survey of the

parameter space, but Matzner & Jumper (2015) estimate analytically that outflows produce ε∗ . 0.5 only

in clusters with escape speeds vesc . 1 km s−1. We show this limit in Figure 12.

Despite this limitation, outflows play a unique role, because they do not depend on the presence of

massive stars. The momentum per unit mass of stars formed delivered by protostellar outflows to their

surroundings is of order the escape speed from a protostellar surface (e.g., Matzner & McKee 2000). Low-

mass and high-mass protostars have similar surface escape speeds, so low-mass stars are as effective at

providing outflow feedback as massive ones. By contrast, for all the other mechanisms we discuss below,

feedback is dominated by massive stars unlikely to be found in small clusters. To quantify this point, we use

the SLUG stochastic stellar populations code (da Silva, Fumagalli & Krumholz 2012; Krumholz et al. 2015b)

to measure the PDFs for the number of supernovae, and bolometric and ionizing luminosity, in clusters at a

range of masses for a Chabrier (2005) IMF. We find that the number of expected supernovae exceeds unity

only for clusters with masses & 100 M�, and that the median (bolometric, ionizing) luminosity of clusters

is < 50% of the value for a fully-sampled IMF in clusters with mass . (400, 700) M�. Consequently,

protostellar outflows are likely to be the only feedback mechanism that limits ε∗ for stellar populations

smaller than a few hundred M�. This limit is very blurry due to stochasticity; some clusters with masses

of only a few hundred M� nevertheless have substantial ionizing luminosities (Andrews et al. 2014).
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3.3.2. Photoionization feedback. A population of stars that fully samples the IMF produces ionizing pho-

tons at a rate of Ψi ≈ 6 × 1046 s−1 M−1
� (Murray & Rahman 2010). These can heat gas in star-forming

clouds to ≈ 104 K, giving it a sound speed of ≈ 10 km s−1. If not trapped either by the surrounding

material or by gravity, this gas will flow outward in a wind known as a champagne flow, directly removing

mass from the cloud. The back-reaction created when the ionized gas pushes off the surrounding neutral

material, known as the rocket effect, may eject even more mass and exert significant forces, ultimately

unbinding clouds entirely. The mass removed in this process can be considerable – the analytic calculations

of Williams & McKee (1997) and Matzner (2002) suggest that a 104 M� population of stars can eject

≈ 10 times its own mass over a few Myr, giving ε∗ ∼ 0.1. Numerical simulations generally confirm this

result, though they show that the value of ε∗ produced by ionization also depends strongly on the initial

boundedness of clouds, and on whether or not they are magnetized (e.g., Dale, Ercolano & Bonnell 2012,

2013; Howard, Pudritz & Harris 2017; Geen et al. 2015, 2016; Gavagnin et al. 2017; Dale 2017; Kim, Kim

& Ostriker 2018).

The main limitation on photoionization as a feedback mechanism is that the ionized gas must be able

to escape, but there is some tension in the simulation literature about how much of a limitation this

represents. Dale, Ercolano & Bonnell (2012, 2013) find that photoionization is unable to unbind more than

a few percent of the mass for clouds with vesc > 10 km s−1, while Kim, Kim & Ostriker (2018) find ε∗ . 0.5

at all escape speeds . 20 km s−1, though it is possible that this is because they include direct radiation

pressure as well as photoionization (see § 3.3.3). None of the other published studies explore a range of vesc

values. It is plausible that even regions with vesc > 10 km s−1 could lose mass due to photoionization, since

freshly-ionized gas rocketing off a dense neutral surface will generally accelerate to small multiples of the

ionized gas sound speed. In the analogous problem of photoionized gas driving winds off accretion disks,

simulations show that even regions with escape speeds ≈ 30 km s−1 launch significant winds (Woods et al.

1996). Thus escape speed required to suppress the effects of photoionization is of order 10 km s−1, but its

exact value is uncertain; in Figure 12 we adopt 15 km s−1.

3.3.3. Direct radiation pressure. A zero-age population of stars that fully samples the IMF has a light to

mass ratio Ψ ≈ 1100 L� M−1
� (e.g., Fall, Krumholz & Matzner 2010). The light is emitted mostly at UV

wavelengths where the ISM is highly opaque, so that even a modest dust column is sufficient to ensure

that essentially all the radiation momentum is deposited in the gas. Whether this affects ε∗ depends on

how the associated radiation force compares to pressure and gravitational forces. H ii region gas pressures

vary with radius as r−3/2 due to ionization balance, while direct radiation pressure varies as r−2, so gas

pressure dominates once H ii regions reach a characteristic size rch ≈ 0.03S49 pc, where S49 is the ionizing

luminosity in units of 1049 s−1 (Krumholz & Matzner 2009). For a stellar population of mass M∗ with

ionizing luminosity S = ΨiM∗, one can show that this radius is larger than the size of the cluster, and thus

radiation pressure rather than photoionization dominates mass removal, only if the escape speed vesc & 10

km s−1. Thus direct radiation pressure becomes dominant roughly where photoionized gas pressure ceases

to be effective.

The importance of direct radiation pressure relative to gravity depends on the cloud column density

(Fall, Krumholz & Matzner 2010; Murray, Quataert & Thompson 2010). Consider a spherical gas cloud of

total (gas plus stellar) mass M and radius R, with a stellar population of mass ε∗M forming at its center.

The column-averaged outward force per unit gas mass supplied by radiation is Ψε∗M/4πR2(1−ε∗)Σc, where

Σ = M/πR2 is the mass per unit area. The corresponding column-averaged inward force per unit mass

from gravity is ≈ GM/R2. Thus the Eddington ratio, which defines the ratio of radiative to gravitational
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force, is fEdd = ΣDRε∗/(1− ε∗), where

ΣDR =
Ψ

4πGc
≈ 340M� pc−2 (11)

is the surface density below which radiation direct pressure becomes important. Naively we would expect

direct radiation pressure to expel gas and thus limit ε∗ only for fEdd & 1, requiring clouds with Σ . ΣDR.

However, Thompson & Krumholz (2016) point out that in a turbulent medium there will be sightlines with

Σ < ΣDR even if Σ > ΣDR on average. Gas can be ejected on these low-column sightlines, leading to a

wind. Their models suggest that, in a cloud with εff ≈ 0.01, this wind will remove mass fast enough to

produce ε∗ ≈ 0.5 at Σ ≈ 10ΣDR; we show this line in Figure 12.

Simulations of the effects of direct radiation pressure have produced mixed results. All simulators find

that direct radiation pressure is ineffective at reducing ε∗ at surface densities & 10ΣDR (e.g., Grudić et al.

2018), but at the surface densities of Σ ≈ 100 M� pc−2 characteristic of Milky Way GMCs some simulators

find that direct radiation pressure yields ε∗ . 0.1 (Grudić et al. 2018), while others find substantially larger

values of ≈ 0.3 − 0.5 (Raskutti, Ostriker & Skinner 2016; Kim, Kim & Ostriker 2018; Howard, Pudritz

& Harris 2018). These disagreements may be due to differences in the initial conditions, or to resolution

problems in the simulations that can lead to a significant overestimate in the effectiveness of direct radiation

pressure in some numerical methods (Krumholz 2018).

3.3.4. Indirect radiation pressure. When interstellar dust absorbs radiation, it re-emits the energy at IR

wavelengths. IR dust opacities are a factor of ∼ 100 smaller than UV ones, but regions of sufficiently

high column density may nonetheless be opaque to the re-radiated IR. In this case the IR photons will be

absorbed again, and can deposit additional momentum; in clouds opaque enough to require many cycles

of absorption and re-emission before the energy escapes, the resulting force will greatly exceed the direct

radiation force (Thompson, Quataert & Murray 2005; Murray, Quataert & Thompson 2010; Thompson

et al. 2015).

Indirect (i.e., dust-reprocessed) radiation pressure feedback is governed by two processes: frequency

diffusion and radiation Rayleigh-Taylor (RRT) instability. Frequency diffusion is important because IR

wavelengths are much larger than interstellar grain radii, so dust opacity varies with frequency as κ ∝ ν2.

Thus as stellar radiation diffuses outward through a dusty envelope and mean photon frequency decreases,

dust-radiation coupling weakens. Eventually photons shift to frequencies low enough to escape. This effect

greatly limits the importance of dust-reprocessed radiation (Wolfire & Cassinelli 1987; Reissl et al. 2018),

and means that the mass-weighted mean opacity of a cloud is a function of the total gas column. Many

subgrid models of radiation pressure ignore this effect and simply assume a constant IR opacity (e.g. Rosdahl

& Teyssier 2015; Tsang & Milosavljević 2018; Hopkins et al. 2018); given the importance of diffusion, their

results should be treated with caution.

RRT instability (Jacquet & Krumholz 2011) causes gas that is being accelerated out of a gravity well by

indirect radiation to become clumpy, reducing the effectiveness of its coupling to radiation. Early numerical

work suggested this would prevent gas ejection entirely (Krumholz & Thompson 2012), but this result proved

to be sensitive to the details of the radiation transfer method. Simulations based on flux-limited diffusion

(Krumholz & Thompson 2012) or M1 closures (Rosdahl & Teyssier 2015; Skinner & Ostriker 2015) find

that RRT prevents gas ejection unless the dust opacity is greatly boosted compared to observed Milky Way

values, while those based on variable Eddington tensor (Davis et al. 2014) or implicit Monte Carlo (Tsang

& Milosavljević 2015) find that it does not, though it does greatly reduce the ejection velocity. The latter

two methods are likely more reliable, so we expect that indirect radiation pressure can limit ε∗.

Under what conditions will this happen? Krumholz & Thompson (2012) show, and simulations by Davis

et al. (2014) confirm, that for any column of gas confined by gravity, there is a maximum radiation flux
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that can pass through it without triggering gas ejection. Calculations properly accounting for frequency

diffusion show that a gas cloud forming stars at its center will exceed the critical flux before the star

formation efficiency ε∗ reaches 0.5 only if its surface density exceeds (Crocker et al. 2018a,b)

Σ∗ & Σ∗,IR =
16
√
πGσSB/c

Ψ

(
κ0

T 2
0

)−1

≈ 7× 104

(
κ0

0.03 cm2 g−1

)−1

M� pc−2, (12)

where T0 = 10 K and κ0 is the opacity per unit gas mass to radiation with a color temperature T0; the

normalization used above is typical of Milky Way dust. We show this condition in Figure 12. Note that

indirect radiation pressure has a minimum surface density at which it becomes effective, while all the

feedback mechanisms discussed previously have a maximum surface density (for direct radiation) or escape

velocity (for ionization) below which they are effective. The reason for this difference is the frequency

diffusion effect: for a fixed radiation flux, a larger gas column traps heat more effectively and thus the

amount of indirect radiation force delivered rises superlinearly with the gas column. Consequently, indirect

radiation force becomes more effective relative to gravity as the total column density increases.

3.3.5. Hot star winds. Stars with surface temperature & 25,000 K and metallicity & 0.5Z� drive winds with

speeds of several thousand km s−1 (e.g., Vink, de Koter & Lamers 2001), producing temperatures & 107

K when the wind shocks against the ISM. At this temperature the radiative cooling time is long compared

to the dynamical time (unlike for protostellar outflows – § 3.3.1 – or winds from intermediate-mass stars,

Offner & Arce 2015), leading to the formation of hot bubbles that can push on surrounding colder gas

and potentially eject it from a cloud. There are a number of analytic models describing this process in

one dimension without cooling (see Bisnovatyi-Kogan & Silich 1995 for a review) and with cooling (Koo &

McKee 1992), and several authors have published 1D numerical results including cooling (e.g., Krause et al.

2016; Fierlinger et al. 2016; Rahner et al. 2017; Silich & Tenorio-Tagle 2018; Naiman, Ramirez-Ruiz & Lin

2018). The general conclusion from these models is that winds will be the dominant feedback mechanism

unless their effects are reduced by two phenomena that cannot be properly captured in 1D: hydrodynamic

leakage of hot gas through low-density channels, and sapping of hot gas thermal energy via turbulent mixing

at the hot-cold interface. The general conclusion from these models is that winds will be the dominant

feedback mechanism unless their effects are reduced by two phenomena that cannot be properly captured in

1D: hydrodynamic leakage of hot gas through low-density channels, and sapping of hot gas thermal energy

via turbulent mixing at the hot-cold interface.

To constrain the importance of leakage and mixing, and thus the effectiveness of hot star winds at

reducing ε∗, there are two approaches available: multi-dimensional simulations and observations. Published

simulations find that, as a result of efficient leakage (Rogers & Pittard 2013; Calura et al. 2015; Wareing,

Pittard & Falle 2017) or mixing-induced losses (Mackey et al. 2015), wind feedback lowers ε∗ by at most

tens of percent. However, there has yet to be a comprehensive parameter study. In addition, only Wareing,

Pittard & Falle (2017) consider magnetized clouds, and the fields they assume are weak. It is possible

that more realistic, stronger magnetic fields might reduce mixing losses (Gentry et al. 2018). Moreover,

winds may be important not so much because they remove mass, but because they halt ongoing accretion

of low-density gas onto molecular clouds (e.g., Gatto et al. 2017; Haid et al. 2018).

X-ray observations probe wind feedback because the pressure in hot gas is directly related to its X-

ray luminosity. The observed luminosities of diffuse gas around YMCs is rule out the possibility that the

wind is trapped (Dunne et al. 2003; Townsley et al. 2003, 2006, 2011), and require significant leakage or

mixing-induced radiative loss (Harper-Clark & Murray 2009; Rosen et al. 2014; Rogers & Pittard 2014;

Toalá & Arthur 2018). Indirect diagnostics based on IR line ratios are consistent with this conclusion (Yeh

& Matzner 2012). Comparing the hot gas pressure in H ii regions to the pressure exerted by warm ionized
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gas and radiation, Lopez et al. (2011, 2014) find that hot gas is subdominant in the massive 30 Doradus

region, and in a wide range of smaller H ii regions in the LMC and SMC. Pellegrini, Baldwin & Ferland

(2011) reach the opposite conclusion for 30 Doradus, but only under the assumption that the hot gas has

a small volume filling factor, which Lopez et al. (2014) point out would make it locally significant but

unimportant as an agent of gas clearing on large scales. Thus there is currently no observational evidence

that hot star winds are important in setting ε∗. However, as with the simulations, observations cover only

a narrow range of parameter space, and it is possible that future work might identify regimes where winds

are important.

3.3.6. Supernovae. Supernovae (SNe) deliver about the same energy as hot star winds, but all at once

rather than gradually over several Myr. Whether this makes them more effective is uncertain. Some

simulators find that SNe effectively destroy molecular clouds (Rogers & Pittard 2013; Calura et al. 2015;

Wareing, Pittard & Falle 2017), while others find that their effects are modest compared to other feedback

mechanisms (Körtgen et al. 2016; Geen et al. 2016; Rey-Raposo et al. 2017). Simulation results appear to

be sensitive to both resolution and numerical method (Gentry et al. 2017, 2018), and there has yet to be

a systematic survey of parameter space. Moreover, analytic models suggest that photoionization feedback

prior to the first SN strongly affects the final outcome (McKee, van Buren & Lazareff 1984; Matzner 2002),

but of the published studies, only Geen et al. (2016) include this effect.

One important limitation on the importance of SN feedback is time delay: even the most massive stars

require tSN ≈ 3 Myr to explode, and sufficiently dense regions may convert a significant fraction of their

gas to stars before the first SN occurs (Fall, Krumholz & Matzner 2010; Kruijssen 2012). A region with

free-fall time tff and star formation rate efficiency εff and no feedback mechanisms except SNe will convert

a fraction ε∗ = εfftSN/tff of its mass to stars before the first SN. This yields ε∗ < 0.5 only if the density

obeys

ρ < ρSN ≈
3π

128Gε2fft
2
SN

≈ 5× 105µH

(
εff

0.01
× tSN

4 Myr

)−2

cm−3, (13)

where µH = 2.3× 10−24 g is the mean mass per H nucleus for the usual cosmic composition of 27% He by

mass. We show this criterion in Figure 12. Moreover, SNe may be unimportant even in regions that obey

Equation 13 because other mechanisms might remove gas on a timescale below tSN. There is substantial

observational evidence that this is the case in at least some regions: clusters with ages ≈ tSN are observed

to be gas free both in the Milky Way (Longmore et al. 2014) and in M83 (Hollyhead et al. 2015), and

the spectra of clusters in the process of gas clearing frequently show Wolf-Rayet features, indicating an

evolutionary phase that precedes the first SN (Sokal et al. 2016). These observations strongly disfavor SNe

as an important mechanism for gas removal. However, much like winds, the main effect of SNe may not be

to clear dense gas, but rather to remove low-density gas and thereby prevent star formation from restarting

after gas clearing.

3.3.7. Summary of feedback mechanisms and expectations on ε∗. Figure 12 provides an overall picture of

stellar feedback. For the smallest clusters, M . 100 M�, protostellar outflows are the only mechanism of

interest because the massive stars responsible for other feedback mechanisms are likely to be absent. Moving

to slightly higher masses, in the great majority of the parameter space occupied by observed clusters in

the disks of modern galaxies, and even for a substantial portion of the globular cluster population, SNe,

photoionization, and direct radiation pressure are all at least potentially effective. When all three are

capable of operating, both simulations and observations suggest that photoionization will dominate because

it has no time delay, and photoionized gas pressure exceeds radiation pressure except in very compact star

clusters with large escape speeds. Most star formation in this region should be characterized by efficiencies
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ε∗ . 0.3, since simulations suggest that photoionization feedback is quite effective when it operates. This is

also in accord with Lada & Lada (2003)’s observation that, for embedded clusters with masses & 103 M�,

the stellar mass fraction seems to increase with age, but only to a maximum of ≈ 30%.

As we move to yet higher masses and densities, characteristic of globular clusters, YMCs, and SSCs,

these three feedback mechanisms begin to become ineffective (see also Grudić et al. 2018). Ionization likely

becomes ineffective first, followed by direct radiation pressure and SNe; this ordering is dictated simply

by the mechanisms’ dependence on mass and radius, as shown in Figure 12. Presumably ε∗ increases

in this region. Indirect radiation, unlike all the other feedback mechanisms, only becomes effective once

the surface density rises above a threshold value. The observed cluster mass-radius distribution shows a

maximum surface density (first pointed out by Hopkins et al. 2010) consistent with this limit, suggesting

that indirect radiation pressure either lowers ε∗ at surface densities above the threshold, or causes cloud

radii to expand during star formation to drive them below it (Crocker et al. 2018a).

Interestingly there is a locus, represented by the unshaded triangle in Figure 12, where no known

feedback mechanism is expected to be effective. This locus is occupied by a small population of massive,

dense star clusters, generally classified as SSCs. Our analysis suggests that these clusters may form with very

high ε∗ values, simply because no feedback mechanism is capable of ejecting much gas from them. However,

we caution that it is probably not realistic to assume that protoclusters spend their entire formation history

on this locus; as we discuss below, real protoclusters almost certainly grow by gas accretion and form stars

simultaneously, and thus will move in Figure 12.

3.4. Star formation histories and timescales

3.4.1. Observational constraints. The final ingredient in our simple model of star cluster formation is its

duration tsf , or, more generally, the star formation history. Age-dating stars is a fraught problem (Soderblom

et al. 2014), so the conclusions we draw must be regarded as somewhat tentative, though the situation has

improved considerably in the last few years.

By far the most comprehensively-studied region is the Orion complex. The young stars in Orion are

spread over several tens of pc, but molecular gas and ongoing star formation are limited to a smaller ∼ 10

pc region around the ONC, which is ≈ 1 pc in size (Hillenbrand & Hartmann 1998 find rh ≈ 0.8 pc) and is

centered on θ1 Ori C, the most massive star in the complex. The ONC is the densest region, and, despite

its small volume, represents a significant fraction of the total number of stars in the complex. We illustrate

one recent measurement of the age distribution in Orion in Figure 13, which suggests three important

conclusions that appear to apply to other star-forming regions as well (e.g., Tan, Krumholz & McKee 2006;

Azimlu, Mart́ınez-Galarza & Muench 2015; Getman et al. 2018; Caldwell & Chang 2018). First, the densest

regions show age spreads that are substantially larger than their dynamical times. Using the ages shown in

Figure 13, the time over which 90% of the ONC stars formed is ≈ 6 Myr (other studies give similar results:

Reggiani et al. 2011; Da Rio et al. 2016; Beccari et al. 2017), while the free-fall time is ≈ 0.6 Myr (Tan,

Krumholz & McKee 2006; Da Rio, Tan & Jaehnig 2014). Consequently, star formation has been ongoing

for ≈ 10 free-fall times. While the absolute ages and the magnitude of the age spread depend on the

choice of age indicator, the conclusion that there is a substantial age spread is robust against this choice,

and against possible contamination due to photometric variability (Messina, Parihar & Distefano 2017)

or variable accretion histories (see Sidebar). This conclusion is also bolstered by kinematic observations

showing that the ONC is very close to virial equilibrium (Kim et al. 2019), implying that it must have had

time to relax dynamically.

Second, while star formation has an extended history, the star formation rate has not been constant over

this period; star formation has accelerated (Palla & Stahler 2000; Caldwell & Chang 2018). (In Figure 13,

recall that the time axis is logarithmic, so constant star formation rate corresponds to a line of slope unity
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Figure 13

Distribution of stellar ages in the Orion star-forming complex. In the main panel, points are stars color-coded by

age as estimated by Kounkel et al. (2018). The orange and blue contours, respectively, show the density of stars on

the sky associated with the components Orion D and Orion A identified in Kounkel et al.’s phase-space analysis;
contours are placed at densities of 10%, 50%, and 90% of maximum density. The inset shows a zoom-in on the

ONC, defined here as a 1 pc-radius region centered on θ1 C (shown by the star). The flanking histograms show the

age distributions for Orion D, Orion A, and the ONC, as indicated. In the ONC panel, we also show tff , the
free-fall time in the central pc of the ONC as estimated by Da Rio, Tan & Jaehnig (2014), and t90 ≈ 10tff , the time

over which 90% of the stellar population formed. The ages we show are those estimated based on spectroscopy

(Kounkel et al.’s ageHR) where available, and based on color (Kounkel et al.’s ageCMD) elsewhere. However, in the
ONC inset and histogram we show only spectroscopic ages, since the color-based ones are unreliable in regions of
high extinction.

rather than zero.) Using the ages shown in Figure 13, we find that the time over which 90% of the stars

formed is ≈ 10tff , but roughly 50% of stars formed in the last ≈ 3tff .

Third, mean age varies with position. The stars in the ONC are significantly younger than the mean
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FALSE AGE SPREADS FOR ACCRETING YSOS?

Some authors have suggested that the dispersion in YSO luminosity at fixed effective temperature, usually

interpreted as an age spread, might instead be due to variation in YSO accretion histories (e.g., Baraffe,

Chabrier & Gallardo 2009; Baraffe, Vorobyov & Chabrier 2012). If some YSOs were to undergo exclusively

“cold” accretion, meaning that accreting material radiates away all its entropy at the accretion shock, they

would descend the Hayashi track more rapidly than YSOs with less efficient shocks, leading to a luminosity

spread that could be mistaken for an age spread. However, the current consensus is that observed stellar

age spreads are not due to this effect. Although both cold accretion and Kelvin-Helmholtz contraction drive

stars down the Hayashi track, they do so at very different rates as a function of stellar mass. As a result,

rather than generating a mass-independent age spread, cold accretion would make it appear that stars with

effective temperatures & 3500 K are systematically older than cooler stars (Hosokawa, Offner & Krumholz

2011). For these higher Teff stars, cold accretion would also produce a small population that would be

extremely luminous and thus appear young (Vorobyov et al. 2017; Jensen & Haugbølle 2018), rendering the

overall apparent age distribution bimodal. Neither a bimodal inferred age distribution for hotter stars nor a

systematic difference in inferred age as a function of effective temperature are observed, which puts strong

limits on how much of the apparent age spread is due to cold accretion.

of the larger Orion A region, which is in turn younger than the still-larger Orion D region. Consequently,

there is a gradient of increasing mean age and age spread as one moves from denser to less dense regions

(Getman, Feigelson & Kuhn 2014; Getman et al. 2018). However, age does not increase as quickly as

free-fall time, so while the ONC is ≈ 10 free-fall times old, the lower density regions around it in Orion A

are only ∼ 1− 3 free-fall times old (Da Rio, Tan & Jaehnig 2014; Jaehnig, Da Rio & Tan 2015). Thus the

outskirts of clusters are older than their centers in an absolute sense, but are dynamically younger. This

statement likely applies to Orion D as well, but we cannot be sure because the gas has already been cleared,

so the stellar density only provides an upper limit on the free-fall time.13

3.4.2. Proposed scenarios. For an isolated star-forming cloud, the natural evolutionary timescale is tff , and

simulations of clouds that do not include an external environment (or effectively mock one up by using

periodic boundary conditions) generally find that all gas is either converted to stars or expelled on such

timescales (e.g., Krumholz, Klein & McKee 2012; Kim, Kim & Ostriker 2018; Grudić et al. 2018, though

for an exception see Wang et al. 2010). Thus the observed spread of ≈ 10tff in the ONC is inconsistent

with expectations from isolated cloud models.14 Observed star formation histories also present a second

challenge: even with tsf ≈ 10tff as in the ONC, since εff ≈ 0.01 (c.f. § 3.2) the ONC should reach a maximum

conversion efficiency ε∗ ≈ 0.1, probably too low to yield a gravitationally-bound cluster (c.f. § 3.5). It is

possible that the ONC will in fact not remain bound (Kroupa, Aarseth & Hurley 2001), though recent Gaia

13This observation reinforces the problem with cloud matching identified in § 3.2: cloud matching would likely
attribute the stars in Orion D to the present-day molecular gas cloud that is confined to the Orion A region.
However, kinematic measurements demonstrate that the stars in Orion D did not form in the Orion A cloud, but
from a separate, now-dispersed reservoir of molecular gas.

14An analogous problem occurs on the scales of entire GMCs, where simulations of isolated GMCs with properties
similar to observed ones generally yield lifetimes of . 5 Myr (e.g., Grudić et al. 2018), while observationally-estimated
GMC lifetimes are closer to 20-30 Myr (Dobbs et al. 2014).
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observations suggest that it will (Kuhn et al. 2018; Kim et al. 2019). Moreover, the general point holds

regardless of the fate of the ONC: the observed low median value of εff means that bound clusters are likely

to arise only from regions where εff is in the upper ∼ 20% of the distribution (plausible, since only ∼ 10%

of star formation results in bound clusters), where the free-fall time is short enough for the star formation

history to extend over > 10 free-fall times (Kruijssen 2012), or some combination of the two.

One possible explanation for the ONC’s star formation history is that it did form in a single free-fall

time, but in an extended region of lower density than that the stars currently occupy. This region was in

a free-fall collapse that halted when massive stars dispersed the gas. In this scenario, tsf � tff not because

star formation was extended in time, but because tff decreased after the stars formed (e.g., Zamora-Avilés

& Vázquez-Semadeni 2014; Kuznetsova, Hartmann & Ballesteros-Paredes 2015, 2018; Vázquez-Semadeni,

González-Samaniego & Coĺın 2017). This would naturally give rise to an age gradient such as that observed,

because stars that formed earlier in the process would retain a higher proportion of their kinetic energy,

and thus end up further from the cluster center in the final configuration (Getman et al. 2018).

However, this scenario encounters serious observational difficulties. First, it would produce a distinct

kinematic signature that is not observed. During collapse stellar motions should be radially inward, and

once collapse is complete and gas has been expelled, the ∼ 90% of the stars that do not remain bound

(since Γ ∼ 10%; § 2.4) should be moving radially outward from the dense center; in either case stellar

velocities should point radially toward or away from the densest point (in the example of Figure 13, the

ONC). However, Gaia shows that this is not the case in Orion or in other complexes (Ward & Kruijssen

2018; Kuhn et al. 2018; Kounkel et al. 2018). Note that this radial expansion is not seen in the simulations

of Kuznetsova, Hartmann & Ballesteros-Paredes (2015, 2018), but this is because the simulations do not

include any form of feedback, and thus nearly all the stars they produce remain bound. If the stars in their

final configuration were to become unbound somehow, the velocities would become largely radial as soon as

the stars expanded significantly compared to their original volume. A second problem is that this scenario

would require even more extreme efficiencies, εff & 0.3, to produce bound systems; excluding the discrepant

cloud matching results, observed εff values do not go this high (c.f. § 3.2). A third problem is that this

scenario requires star clusters to pass through a dense phase wherein the mass is still largely in the form of

gas, so that for any given star cluster, there should be a comparably dense gas cloud. However, surveys have

consistently failed to find gas clouds as dense as the densest YMCs (Ginsburg et al. 2012; Longmore et al.

2014; Walker et al. 2016; Urquhart et al. 2018). We illustrate this with a current compilation of gas clouds

and clusters in Figure 14. Notice that, for the densest clusters in the disk of the Galaxy (though interestingly

not for the Galactic Center), there are no clouds dense and massive enough to be their progenitors if the

entire cloud had to be assembled at once. Given these problems, it is unlikely that the extended formation

times are illusory.

How then are the long formation times to be explained? One possibility is that existing simulations

do not yet have enough physics or enough resolution to produce realistic lifetimes. There would be some

precedent for this: for decades simulations struggled to reproduce the small observed values of εff , but,

as noted in § 3.2, simulations that include multiple feedback processes, initial turbulence, and magnetic

fields are now approaching this goal. It is possible that the same will happen with the duration of star

formation. More likely, however, the problem with current simulations is lack of the larger scale-environment

that provides an ongoing mass supply. Observed protoclusters are generally located at the confluence of

gaseous filaments, suggesting a “conveyor belt” picture in which gas accretion onto a protocluster and star

formation occur simultaneously (Longmore et al. 2014; Motte, Bontemps & Louvet 2018; see Supplementary

Materials). Inflow supplies energy to maintain turbulence and prevent contraction (Klessen & Hennebelle

2010; Goldbaum et al. 2011; Matzner & Jumper 2015; Lee & Hennebelle 2016a,b), which together with local

feedback processes keeps εff low. This state persists as long as the accretion lasts, which can be many times
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Comparison of masses and radii of young massive clusters (YMCs) in the disk of the Milky Way and near the
Galactic Center, as indicated, and for clumps of molecular gas. The YMCs plotted are those listed in Table 3. For

gas clouds in the Galactic disk, we show the sample of Urquhart et al. (2018, U18) from ATLASGAL, which is

complete except near the Galactic Center. We supplement this with the Galactic Center clouds reported by
Longmore et al. (2012, L12) and Immer et al. (2012, I12). The dashed and dot-dashed lines marked for each cluster

show the mass as a function of radius for clouds with density as a function of radius ρ ∝ r−2 and r−1.5, as

indicated. These lines indicate the loci below which progenitors clouds for these clusters would have to lie if their
densities varied as the indicated power-law, i.e., a gas cloud with density versus radius ρ ∝ r−2 would only be dense

enough to form the indicated star cluster if it were to lie below the dashed line emerging from that star cluster. For

several disk clusters, there are no gas clouds that satisfy this condition.

the local value of tff because the accretion flow is dictated by processes occurring on much larger scales with

much longer dynamical times. Because εff is small and gas consumption slow, the star-forming gas mass

grows with time, leading to an accelerating star formation rate. Once accretion ceases, and the turbulent

energy supply and confining ram pressure of the accretion are removed, any remaining gas is converted to

stars or expelled by feedback in a time of order tff , as happens in the isolated cloud simulations. The final

star formation efficiency is ultimately be dictated by the efficiency of feedback at ejecting gas, and if the

ratio of mass ejected by feedback to mass converted into stars is . 1, then the final value of ε∗ is large even

if εff is always fairly small.

This scenario is consistent with observed values of εff , naturally produces an accelerating rate of star

formation, and also yields a cluster mass-size relation in good agreement with observations (Matzner &

Jumper 2015; Lee & Hennebelle 2016b). Because the final mass that goes into a cluster was never assembled

in a single cloud all at once, there is no problem with finding clouds dense enough to be the progenitors

of the densest clusters. It is not clear if this mechanism is capable of producing the core-halo age gradient

observed by Getman, Feigelson & Kuhn (2014) and Getman et al. (2018), and visible in Figure 13 – for the

ONC this gradient is ∼ 0.5 Myr pc−1. Such a gradient could arise as a result of earlier-forming stars having

longer to undergo dynamical heating in the core of the forming cluster, but this possibility has not been

examined quantitatively. A second possible challenge for this picture is that preliminary work suggests that

it leads to clusters with significant rotational support Lee & Hennebelle (2016a,b). While some clusters

do rotate (e.g. Davies et al. 2011; Hénault-Brunet et al. 2012; Kamann et al. 2018), others do not (Kuhn

et al. 2018), and it is not clear if the predicted rotation rate distribution is consistent with observations.

However, current theoretical predictions for the rotation rate distribution do not yet take into account the
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possibility of braking by dynamically-significant magnetic fields.

3.5. Emergence of the gas-free cluster population

3.5.1. The initial cluster mass function. The initial cluster mass function (ICMF), defined as the CMF

immediately after gas removal, is the starting point for understanding the evolution of clusters. The ICMF

is less well defined than its stellar counterpart because the stellar content of a cluster is constantly evolving,

particularly for unbound clusters. Adams & Myers (2001) showed that a cluster must contain & 100 stars in

order for the dynamical time to exceed the formation time, which they took to be ∼ 1−2 Myr. Indeed, the

ICMF for embedded clusters in the Solar neighborhood turns down below N ∼ 100 stars, corresponding to

a cluster mass ∼ 50M� (Lada & Lada 2003). As discussed in § 2.2, the CMF for observed clusters usually

can be fit with a Schechter function with a power-law index αM ≈ −2 and a truncation mass Mc that is

related to the environment. Elmegreen (2006) has shown that a slope αM = −2 naturally accounts for the

fact that the stellar IMF averaged over a galaxy is very close to the average IMF of individual star clusters.

3.5.1.1. The clump mass function. Theoretically, the ICMF is the product of the clump mass function

(§ 3.1.2) and the mass-dependent star formation efficiency ε∗(M). This is approximate: in a turbulent

medium the clump mass evolves with time, and we have seen in § 3.4 that bound clusters form over

multiple dynamical times with continuous accretion, so that the star-forming gas is never assembled into

a single monolithic clump. Nonetheless, clumps still provide a useful approximation for modeling the

complex process of cluster formation, just as protostellar cores provide a useful basis for modeling the

stellar IMF (e.g., Hennebelle & Chabrier 2008). An important factor determining the clump mass function,

dNclump/dM ∝ MαM, clump , is that molecular clouds are supersonically turbulent and appear to be self-

similar from the outer scale of the turbulence (generally encompassing the entire cloud) to the sonic scale

(∼ 0.1 pc in Galactic GMCs). Fleck (1996) was the first to argue that αM, clump = −2 for a self-similar

medium in which clumps form hierarchically. Elmegreen & Falgarone (1996) came to a similar conclusion

by using the observed fractal dimension of molecular clouds, and for the first time suggested that this would

lead to a similar slope for the ICMF. Guszejnov, Hopkins & Grudić (2018) have elaborated the argument for

αM, clump = −2, which we paraphrase: assume that the clouds form hierarchically, either by fragmentation

or by mergers, and that each level of the hierarchy, n, contains Nn clumps that have a range of masses

∆Mn ∝Mn. Then the total mass at level n is

Mtot(Mn) = MnNn = Mn

(
Nn

∆Mn

)(
∆Mn

Mn

)
Mn ∝M2

n
dN

dM
, (14)

where the last step follows for large n. If the hierarchy is populated throughout, so that the mass at

each level of the hierarchy, Mtot(Mn), is about constant, then αM, clump ≈ −2. This argument is clearly

approximate; for example, GMCs have most of their mass at high masses in the Milky Way and at low

masses in some other galaxies (§ 3.1.2). In a dynamical system such as a GMC, the clumps at different

levels of the hierarchy can also have different lifetimes, thereby changing the observed PDF; for example,

if the clumps have mass-independent surface densities and survive for a time proportional to the free-fall

time, the observed value of αM, clump is larger than the intrinsic value by 1/4 (Fall, Krumholz & Matzner

2010). This theory of the clump mass function is thus not very precise, but it is broadly consistent with

observation.

3.5.1.2. From clumps to clusters. As noted above, the ICMF is related to the mass distribution of the

natal molecular clumps by the star formation efficiency (SFE), ε∗(M), so that dN(M∗) ∝ ε∗(M)dNclump(M)

approximately, where it is possible that more than one cluster forms in a cloud. Photoionization and direct
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radiation pressure are the most broadly effective feedback mechanisms (§ 3.3). Photoionization removes a

mass ∆Mion ∝ S4/7t9/7/ρ1/7 over a time t, where S is the rate of production of ionizing photons (Whitworth

1979). If this is the dominant feedback mechanism, star formation will continue until ∆Mion ∼M . In terms

of ε∗, this will occur at the star formation time tsf = ε∗tff/εff , so that

ε∗ ∝ ε9/13
ff Σ33/52M1/52. (15)

Bound clumps (αvir ∼ 1) have surface densities that depend only on the turbulence parameter, C = σ/R1/2

(Equation 2), which is observed to be approximately constant in a galaxy (e.g., Sun et al. 2018). For

constant εff (§ 3.2), this implies ε∗ is nearly independent of M , so the ICMF has the same slope as the

clump mass function. If on the other hand stars form in a fixed number of free fall times so that ε∗ ∝ εff ,

then ε∗ ∝ Σ33/16M1/16, very close the results of Kim, Kim & Ostriker (2018) for small ε∗.

Direct radiation pressure injects momentum at a rate proportional to the stellar mass. Stars will form

until the injected momentum ∝ ε∗Mtsf reaches Mvesc, so that

ε∗ ∝ (εffΣ)1/2, (16)

with no explicit dependence on M . If tsf ∝ tff , so that ε∗ ∝ εff , then ε∗ ∝ Σ, as found by Fall, Krumholz &

Matzner (2010). In this case, or if εff is about constant, the SFE is independent of mass for bound clumps,

which have similar surface densities in a given galaxy as noted above. As a result, the slope of the ICMF

is the same as that for the clump mass function, αM, clump ≈ αM ≈ −2.

3.5.2. Bound clusters. With our broad definition of cluster (§ 1.2.2), essentially all stars are born in clusters

(c.f. Lada & Lada 2003). However, most clusters are unbound by gas dispersal and thus disperse rapidly,

so that Γ . 0.1 for T & 10 Myr. In this section we investigate the origin of the low value of Γ after gas

dispersal. As discussed in § 3.1.1, most GMCs appear to be bound (i.e., αvir . 2), as are the dense clumps

within them (Urquhart et al. 2018), so most stars are born in gravitationally bound gas. Even in GMCs

that are moderately unbound, αvir ≈ 5, efficient star formation results in most stars being confined to

gravitationally bound structures (Clark et al. 2005). Thus the low value of Γ must be related to the star

formation efficiency, ε∗, and to how the gas not converted to stars is ejected.

The first author to estimate Γ considered a spherical cloud in virial equilibrium that turns a fraction

ε∗ of its mass into stars and ejects the rest (Hills 1980). If gas removal occurs over many dynamical times,

the process is adiabatic, the cluster remains bound for any ε∗, and its final and initial radii are related by

Rf/R0 = 1/ε∗. If gas removal is rapid, ejection of more than half the mass (ε∗ < 0.5) unbinds the stars;

for ε∗ > 0.5 the radius expands, Rf/R0 = ε∗/(2ε∗ − 1). Even for ε∗ < 0.5, however, the low-velocity part

of the cluster can remain bound (Lada, Margulis & Dearborn 1984). In simulations, Kroupa, Aarseth &

Hurley (2001) find bound remnants remain for ε∗ as small as 0.3.

More realistic starting conditions can modify these conclusions. If the stars are initially subvirial, with

Q0 = 2T∗/|W∗| < 1, where T∗ and W∗ are the initial kinetic and potential energies of the stars, respectively,

then one can show that the minimum ε∗ for the entire star cluster to be bound is ε∗,min = Q0/2. If a cluster

has substructure, then the additional binding energy can help it survive (Allison et al. 2009); whether the

cluster remains bound depends unpredictably on the exact spatial distributions of gas and stars and on

the timing of gas removal (Smith et al. 2011, 2013). The minimum value of ε∗ for a bound cluster is also

reduced if the stars are more concentrated than the gas, so that the local value of ε∗ increases inward.

Adams (2000) showed that part of a cluster embedded in a gas distribution approximating an isothermal

sphere could survive sudden gas expulsion down to very low values of ε∗. A cluster that forms in a centrally

concentrated gas cloud with a constant value of εff has a star formation rate ρ̇∗ ∝ ρ3/2 (Parmentier &

Pfalzner 2013); in a particular implementation of this model, Shukirgaliyev et al. (2017) found a minimum
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global star formation efficiency ε∗,min = 0.15 for some stars to remain bound. Analysis of a simulation of

the formation of a cluster led Kruijssen et al. (2012a) to conclude that most cluster stars form in gas-poor

subclusters that have locally high ε∗ and are therefore relatively immune to gas expulsion; however, this

work did not include feedback or magnetic fields, and thus its ε∗ values are unrealistically high.

Real star-forming regions are hierarchically-structured, containing both dense parts for which mass

removal is slow compared to the local dynamical time, and diffuse parts for which it is fast; we see this

directly in the Orion star forming complex (§ 3.4). Elmegreen (2006, 2008) was the first to point out that

this configuration naturally gives rise to a gravitationally-bound central region and an unbound periphery.

Kruijssen (2012) provided a quantitative model for Γ in such an environment, based on three main premises:

first, the density PDF is lognormal, as expected in supersonically-turbulent flows; second, εff ≈ 0.01 inde-

pendent of density, as observations suggestion (§ 3.2); third, gas at all densities is removed rapidly after

some fixed timescale tsf set by stellar feedback. Given these ingredients, he calculated a density-dependent

star formation efficiency ε∗(ρ) = εff [tsf/tff(ρ)], and integrated over the density PDF to derive the fraction

of mass for which ε∗ & 0.5, which he associated with the bound fraction Γ. A generic prediction of this

model is that Γ increases with mean ISM density or pressure, although such a prediction is not unique to

this model, since many of the feedback mechanisms discussed in § 3.3 become less effective at higher gas

surface density.

In this view, the low value of Γ is not so much “infant mortality” as “infant weight loss”: stars form

in hierarchical structures where only a small fraction remains bound after gas dispersal, so rather than

Γ = 0.1 meaning that 90% of clusters disperse and 10% remain bound, it means that 90% of the stellar

mass is in the unbound part of the structure that escapes immediately after gas dispersal. Of course in

reality both mortality and weight loss may operate: hierarchical structures may lose much of their stellar

mass in low-density regions, and then even the denser regions that survive may disperse soon thereafter if

they are insufficiently concentrated to survive stellar evolution and tidal shocking (§ 4).

Although the case in which stars form in a pre-existing density structure (either uniform or

hierarchically-structured) has garnered the most attention in the literature, we have argued that it is

more likely star formation and cloud assembly are contemporaneous. One can generalize the star forma-

tion model in § 3.2 to allow for gas accretion while the stars form (see “Conveyor-Belt Model for Cluster

Formation” in the Supplementary Materials). However, provided the time over which the cloud accretes is
<∼ tsf (Equation 10) the results are similar to those above. If the accretion stops due to feedback, then it is

likely that the subsequent mass loss would be fast, since the same processes stopping the accretion would

eject the gas in the clump. On the other hand, if the accretion stops because the supply of new gas runs

out, then stars would continue to form and the mass loss would be slow.

One final consideration is that clusters form in tidal gravitational fields (§ 4.1), which sets a minimum

density for the bound part of the cluster, ρti. After mass loss, the final mean density of a cluster with initial

radius R0 and density ρ0 is (Mathieu 1983)

ρ∗f
ρ0

= fbε∗

(
R0

Rf

)3

→


(2ε∗ − 1)3

ε2∗
fast mass loss,

ε4∗ slow mass loss,
(17)

where fb is the fraction of the stellar mass that is bound, and we have assumed fb = Q0 = 1 in the

expressions for the limiting cases.15 Clusters are generally centrally concentrated, and stars in the outer

parts of the cluster in which the final stellar density, ρ∗f , is less than the tidal limit will be lost. For a

simple spherically symmetric model in which (1) the gas density varies as r−k with k ' 2 (Schneider et al.

15The expression for the fast case is valid only for ε∗ & 0.6 (Lada, Margulis & Dearborn 1984).
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2015), (2) ε∗ ∝ 1/tff (as in the Kruijssen 2012 model), so ε∗ ∝ ρ1/2 ∝ 1/r, and (3) ε∗ near the center

approaches unity (see “Cluster-Forming Clouds and Clumps” in the Supplementary Materials), the bound

fraction is large, fb & 0.5, for values of the cloud-averaged ε∗ & 0.01; in this model, the mean value of ε∗
for the stars that remain bound is ε∗b & 0.3.16

Altogether, theoretical estimates of the bound fraction are the product of several uncertain factors.

First, after the accretion of gas onto the cluster-forming clump has ceased, what fraction of the clumps are

bound? Second, what fraction of the stars remain bound after the residual gas is ejected? Observations

suggest that star formation is coincident with clump formation, at least in the early stages, but it is not

clear whether this process is halted by feedback, leading to rapid mass loss and requiring a relatively high

star formation efficiency, or by a lack of gas, which would be consistent with a lower efficiency. Tides due

to the local environment can also strip stars from the outer regions of the cluster when mass is lost, a point

to which we return in § 4.3.1.

3.5.3. Numerical results. A few authors have attempted to simulate the full range of processes – formation

of a mass spectrum of clumps, conversion of gas into stars, and gas removal by feedback – that determine

the ICMF and Γ. This is very challenging numerically, since capturing the formation of a statistically-

meaningful sample of clusters requires simulating either an entire galaxy or a substantial portion thereof.

Modern isolated galaxy or cosmological zoom-in simulations generally reach spatial resolutions no better

than ∼ 1 pc, and mass resolutions of ∼ 102 − 103 M�. Comparing these figures to the star cluster

properties shown in Figure 9, even for GCs this corresponds to . 103 mass resolution elements per cluster,

and . 3−10 spatial resolution elements per half-mass radius. Thus simulations must rely on parameterized

subgrid models to handle both star formation and feedback.

Perhaps not surprisingly, this situation yields little consensus. Renaud, Bournaud & Duc (2015) simulate

an Antennae-like galaxy merger, and find that Γ is a few percent pre-merger, but rises to ≈ 10% during

the main burst of star formation. In contrast, Li, Gnedin & Gnedin (2018) find Γ values from ≈ 1% to

≈ 50% in their cosmological simulations that run to z ≈ 1.5. Renaud, Bournaud & Duc (2015) and Maji

et al. (2017) find lognormal ICMFs in simulations of both mergers and quiescent spiral galaxies (contrary to

observations), while Dobbs et al. (2017), Li et al. (2017), and Li, Gnedin & Gnedin (2018) find ICMFs that

are well-described by power-laws or Schechter functions with αM ≈ −2. Li, Gnedin & Gnedin (2018) test

a variety of star formation and feedback prescriptions, all tuned to reproduce the galaxy-scale Kennicutt

relation and various other constraints, and find that both Γ and the ICMF are extremely sensitive to the

choice of subgrid model.

We conclude that present galaxy simulations have little predictive power when it comes to star clusters;

instead, a more productive approach would be to use the observed properties of star clusters as an additional

constraint to calibrate the subgrid models. There do, however, appear to be two qualitative results that

persist across recipes. First, all simulations find that Γ increases at higher surface densities of star formation,

which occur in regions of higher pressure. Second, all authors find that the ICMF extends to higher masses

during mergers. This is also consistent with the results of a number of other cosmological simulations

showing that early, gas-rich galaxies are capable of producing clusters with initial masses & 106 M� (Kimm

et al. 2016; Ricotti, Parry & Gnedin 2016; Kim et al. 2018).

16There are several distinct bound fractions: Γ is the fraction of all stars that are bound, fb is the fraction of stars
that are bound in a particular cloud, and ε∗b is the fraction of gas that went into stars in the bound part of a cluster.
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3.6. Elemental abundance distributions

There has been surprisingly little theoretical work on the physical origins of abundance homogeneity in star

clusters. Murray & Lin (1990) observed that narrow giant branches in GC CMDs implied they were highly

uniform in [Fe/H], and suggested that turbulent diffusion could explain why clouds are highly uniform prior

to the onset of star formation. This process would mix out abundance inhomogeneities at the scale of a

cloud over a cloud crossing time, and smaller-scale inhomogeneities even more quickly. Feng & Krumholz

(2014) provide numerical support for this idea, finding in a simulation of star formation in a colliding flow

of warm neutral gas that the mixing process washes out homogeneities in the initial colliding streams by a

factor of 5 or more. This may be telling us that the small inhomogeneities detected in a few open clusters

(e.g. M67; Liu et al. 2016b) reflect metal anomalies (predicted to be ∼ 0.1 dex – Krumholz & Ting 2018) in

the birth cloud (§ 2.6). Feng & Krumholz also find that even unbound clusters can also be homogeneous,

a prediction that has yet to be tested by observations. Armillotta, Krumholz & Fujimoto (2018) revisit

the Feng & Krumholz (2014) simulations using more realistic initial conditions, a cloud extracted from a

galaxy simulation, and zoom in to follow it collapse into individual stars at a resolution of ≈ 10−3 pc.

They find that the abundance scatter between formed stars decreases on shorter length scales, indicating

that turbulent mixing becomes more efficient on smaller and smaller scales (. 5 pc), in agreement with the

discussion above. Interestingly, they also find that some stellar clusters are separable from others within

the collapsing clouds based on abundances, but not all.

A few caveats are in order. First, the simulations of Feng & Krumholz (2014) and Armillotta, Krumholz

& Fujimoto (2018) assume that metals are well-coupled to the gas, but this need not be the case for metals

in the form of dust grains. Padoan et al. (2006) first raised the prospect that small-scale turbulence could

generate low-level variations in the dust to gas ratio. More recently, Hopkins & Lee (2016) and Lee, Hopkins

& Squire (2017) find far more dramatic variations in their simulations and even suggested that some stars

could form in “totally metal” regions (Hopkins 2014). But this work has been refuted by Tricco, Price &

Laibe (2017) who find no evidence for significant variations; the use of tracer particles in supersonic flows

lead to numerical artifacts that exaggerate density contrasts. Second, the cluster formation simulations to

date have not considered the effects of magnetic fields, which Sur, Pan & Scannapieco (2014) suggest can

suppress the mixing over a wide range in Mach number. Here, the same random stretching and folding that

is responsible for turbulent diffusion also amplifies the magnetic energy density by the dynamo mechanism,

which in turn can suppress the mixing on small scales.

A third caveat is that, while galaxy-scale simulations are starting to consider injection of new metals by

stellar evolution (e.g., Emerick, Bryan & Mac Low 2019), simulations that resolve cluster formation have

yet to do so. Bland-Hawthorn, Krumholz & Freeman (2010) point out that, even if turbulence homogenizes

a cloud, it will only remain homogeneous if star formation ceases before the first SN explodes, since even a

single SN will produce measurable abundance variations. For a gas cloud with mass M , surface density Σ,

and virial ratio αvir, the crossing time is tcr ≈ (αvirG)−1/2M1/4Σ−3/4 (c.f. § 3.1.1). If we adopt αvir = 1.5,

and the cluster forms over τsf = tsf/tcr crossing times, then

tsf ≈ 3.0
(τsf

4

)( ε∗
0.2

)−1/4
(

M∗
104 M�

)1/4(
Σ

0.3 g cm−2

)−3/4

Myr, (18)

where ε∗ = M∗/M is the star formation efficiency. Thus tsf < tSN, which is conservative given that most SN

progenitors have longer lifetimes, holds for OCs (Σ ≈ 0.3M� pc−2) up to 105M�, and for GCs (Σ ≈ 3M�
pc−2) up to 107M�. This last estimate is interesting in light of the fact that globulars can show high levels

of Fe homogeneity; as we have seen, for other elements, the story is more complicated. How there can be

differential scatter across elements is not understood, unless it reflects the state in the collapsing cloud (see

below). In Figure 9, there is evidently a lot of scatter but our point is to emphasize the difference between
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OCs and denser GCs.

Both this calculation and the simulations of Armillotta, Krumholz & Fujimoto (2018) raise the question

of how to apply estimates of chemical homogeneity or inhomogeneity in the context of hierarchical star-

forming systems that do not have clear edges. This topic is currently under investigation using a combination

of Gaia data and ground-based, million-star surveys at high spectroscopic resolution (e.g. GALAH; De Silva

et al. 2015). The astrometric information can be used to identify every aggregate within dozens of nearby

stellar hierarchies (Gouliermis 2018), while the spectra provide abundances for all stars cooler than ≈ 7000

K. This work will provide the first clues for how to map stars between abundance and physical space, i.e.,

the possibility of determining how closely together in space two stars formed based on the level of similarity

or difference in their elemental composition, with major implications for the future of chemical tagging in

Galactic archaeology (Freeman & Bland-Hawthorn 2002; Bland-Hawthorn & Freeman 2004). It is also not

clear how to apply these models in the context of multiple generations and detectable abundance anomalies

in globular clusters (§ 2.6).

4. LIFE AND DEATH

Since the slope of the CAF αT < 0 even for ages older than ≈ 10 Myr (§ 2.3), cluster disruption cannot

depend solely on gas expulsion immediately after cluster formation. Instead, there must be processes that

destroy star clusters during the gas-free phase of their evolution. It is to these processes that we now turn.

We begin with a brief review of star cluster structure and tidal fields in § 4.1, then examine disruption

processes driven primarily by mechanisms internal to the cluster (§ 4.2) and those driven primarily by the

external environment (§ 4.3), before concluding with attempts to synthesize both into a coherent explanation

for the demographics of star clusters § 4.4. Since our focus is on the demographics and evolution of the

star cluster population as a whole, we will not discuss processes that alter the internal structure of star

clusters while leaving their bulk properties unchanged, e.g., dynamical alteration of the binary fraction or

stellar collisions. We refer readers to Portegies Zwart, McMillan & Gieles (2010) and Renaud (2018) for a

discussion of these processes.

4.1. Star cluster structure and tides

A crossing time after gas is removed, star clusters that remain bound relax to a nearly-spherical, virialized

state. From this point up to ages of several hundred Myr, their density profiles are well described by the

Elson, Fall & Freeman (1987, EFF hereafter) distribution, which has surface density as a function of radius

Σ(r) = Σ0

(
1 + r2/a2

)−γ/2
. Here Σ0 is the central surface density, a defines the radial scale, and γ describes

the fall off in surface density in the outer, power-law region; observed values of γ are generally in the range

≈ 2.2− 3.2 (Elson, Fall & Freeman 1987; Mackey & Gilmore 2003a,b). The core radius for an EFF profile,

defined to match that of a King profile (see below) is rc ≈ a
√

22/γ − 1.

The EFF profile is not in energetic equilibrium, and thus clusters observed to have this distribution

cannot have reached either internal relaxation or equilibrium with the tidal field of their host galaxy. At ages

beyond a few hundred Myr, clusters relax and become well-fit by King (1962, 1966) models where stellar

energies are distributed as a “lowered Maxwellian” of the form f(E) ∝ (2πσ2)−3/2
[
exp

(
−E/σ2

)
− 1
]

for

some constant velocity dispersion parameter σ. Physically, the −1 in square brackets reflects the fact that

the velocity distribution cannot be a pure Maxwellian, because the cluster has a finite escape speed, and

thus any star that is too far out on the tail of the distribution will leave. Combining this assumed energy

distribution with the Poisson equation for self-gravity yields an equation for the radial density distribution

and potential. Solutions to this equation form a one-parameter family, with the parameter conventionally

specified by setting the dimensionless potential well depth at the cluster center W0 = (vesc/σ)2, where

www.annualreviews.org • Star clusters 47



x/rti

−1.5 −1.0 −0.5 0.0 0.5 1.0 1.5

y/
r t

i

−1.5
−1.0
−0.5

0.0
0.5
1.0
1.5

z
/r

ti

−1.5

−1.0

−0.5

0.0

0.5

1.0

1.5

To galactic center

L1 L2

−1.5 −1.0 −0.5 0.0 0.5 1.0 1.5

x/rti

−1.5

−1.0

−0.5

0.0

0.5

1.0

1.5

z
/
r t

i

L1 L2

To galactic center

φ = EJ
φ = 0.95EJ
r = rti

Bound if E < EJ

Potential escapers

Figure 15

Isosurfaces of the potential φ(x, y, z) (Equation 19) for a point-like star cluster embedded in a galaxy, seen in 3d

(left) and in a cut through the xz plane (right). The cluster center is located at the origin, while the galaxy center
is located at (−Rg , 0, 0) for some distance Rg much larger than the physical size of the cluster. In the example

shown, λy = 0 and λz/λx = −1/3. Blue shows the Jacobi surface, defined by φ = EJ , while green shows a potential

φ = 0.95EJ , i.e., with energy 5% greater than the Jacobi energy. Orange shows a sphere of radius r = rti
(Equation 20). The Lagrange points L1 and L2 are as indicated. Stars inside the Jacobi surface, shaded blue in the

right panel, are bound cluster members if their total energy E < EJ . Stars outside the Jacobi surface but at r < rti
(shaded orange), or those inside the Jacobi surface with E ≥ EJ , are potentially unbound from the cluster, and can
escape through the “windows” around L1 and L2.

vesc is the escape speed from the cluster center. Most observed OCs and GCs are reasonably well-fit by

W0 ≈ 3− 7, though a small number of core-collapsed globulars and some of the most concentrated YMCs

have W0 & 10.

For a King model, one can define the core radius rc =
√

9σ2/4πGρ0, where ρ0 is the central density.

The core radius is distinct from the half-mass radius rh (§ 2.5), and rh/rc is a function of W0, but for

W0 ≈ 3 − 7, rh/rc is within a factor of a few of unity. A second useful quantity is the truncation radius

rtr, the radius at which the density falls to zero. This can be combined with the core radius to yield the

concentration c = log(rtr/rc). This is a monotonically increasing function of W0, so clusters with deeper

potential wells are more centrally concentrated. For this reason, clusters are often parametrized in terms

of values of c instead of values of W0. The observed range W0 ≈ 3− 7 corresponds to c ≈ 0.6− 1.5. Note

that the EFF model does not have a truncation radius.

King models in principle apply to an isolated star cluster, but it is common to assume that the truncation

at rtr is due to the tidal field of the cluster’s host galaxy.17 One can derive an effective potential in the frame

17We emphasize that this assumption is not physically required. While a cluster in equilibrium cannot be larger
than the size imposed by galactic tidal truncation, it could be smaller, e.g., if the cluster were truncated by gas
removal unbinding its outer regions (c.f. § 3.5). Conversely, clusters can remain out of equilibrium and larger than
their tidal radii for hundreds of Myr, which is why EFF profiles usually provide better fits than King profiles for
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co-moving with a cluster orbiting with a galaxy by Taylor-expanding the galactic potential and adding this

to the centrifugal acceleration in the rotating reference frame. If one approximates the cluster as point-like,

the resulting total potential is (e.g., Renaud, Gieles & Boily 2011)

φ(x, y, z) = − GM√
x2 + y2 + z2

− λx
2

(
x2 +

λy
λx
y2 +

λz
λx
z2

)
, (19)

where M is the cluster mass, λx, λy, and λz are the three eigenvalues of the tidal plus centrifugal tensor,18

and the coordinate system is oriented so that the center of the galaxy lies at on the x axis at x < 0, and

the tidal plus centrifugal tensor has zero off-diagonal components. For a star cluster on a circular orbit at

the midplane of an azimuthally-symmetric galactic potential φG, adopting a coordinate system where the y

direction is spinward, the z direction is out of the galactic plane, and the coordinate system is right-handed,

the eigenvalues of the tensor are λx = −∂2φG/∂x
2 + ∂2φG/∂z

2, λy = 0, and λz = −∂2φG/∂z
2.

The potential φ has five extrema or saddle points, known as the Lagrange points; of these, by convention

the points L1 and L2 lie at positions L1,2 = (∓rti, 0, 0), where

rti =

(
GM

λx

)1/3

(20)

is known as the tidal radius. At these points, the acceleration due to the gravity of the cluster is equal to

that due to the combination of galactic gravity and the centrifugal force. The value of the potential at L1

and L2 is the Jacobi energy EJ = −(3/2)GMc/rti, and the locus where φ(x, y, z) = EJ is called the Jacobi

surface (Figure 15).

Stars with total energy E < EJ are unable to cross the Jacobi surface, so any such stars located within

it are bound to the cluster. Since the volume within this surface defines the volume of the star cluster,

tidal truncation therefore defines a characteristic density ρti ≈ 3M/4πr3
ti = 3λx/4πG, which depends only

on the tidal tensor and thus on the cluster’s orbit and environment, and not on the cluster mass. Stars

with energies E ≥ EJ are not bound to the cluster, but if they are located inside the Jacobi surface then

they can only escape through a “window” around L1 and L2, with the size of the window depending on

E/EJ . We show an example escape window for E/EJ = 0.95 (i.e., for a star with energy 5% greater than

the Jacobi energy) in Figure 15. With the exception of those ejected during violent tidal shocks, most

stars escaping a cluster have energies only slightly larger than EJ , so escape tends to be primarily near the

Lagrange points.

4.2. Internal evolutionary processes

With these preliminaries understood, we can now ask what mechanisms can alter clusters’ properties during

the gas-free phase of their evolution.

4.2.1. Stellar evolution. At ages from ≈ 3− 40 Myr, stellar populations eject ≈ 20% of their mass in SNe,

which produce high-speed gas that almost certainly escapes the parent cluster; moreover, the remnant

neutron stars or black holes left behind by SNe receive kicks of several hundred km s−1 (e.g., Faucher-

Giguère & Kaspi 2006), so most escape the star cluster as well. After ≈ 40 Myr, SNe cease and mass loss

younger clusters.
18Because λx,y,z are eigenvalues that arise from derivatives of the gravitational plus centrifugal tensor, Renaud,

Gieles & Boily (2011) refer to them as the effective eigenvalues, to distinguish them from the eigenvalues of the tidal
tensor by itself, computed without including the centrifugal potential.
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becomes dominated by asymptotic giant branch (AGB) stars shedding their envelopes. This process is more

gradual, so that the total mass loss reaches ≈ 40% only after ≈ 1 Gyr, and does not reach 50% until ages

of order a Hubble time. Moreover, while AGB wind velocities are high enough (tens of km s−1) that little

of the wind mass is likely to be retained, the white dwarfs left behind receive much smaller kicks, and thus

are likely to remain in the cluster (e.g., Kruijssen 2009).

By itself a factor of two decrease in mass would be a small effect. However, the effects of mass loss

can be greatly amplified by a tidal field. Adiabatic mass loss makes the cluster radius expand while the

tidal radius shrinks; stars that find themselves outside rti as a result are lost. For clusters that begin

their evolution filling their tidal radii, this effect roughly doubles the mass loss rate due to stellar evolution

alone (Takahashi & Portegies Zwart 2000; Baumgardt & Makino 2003; Lamers, Baumgardt & Gieles 2010).

Moreover, in the presence of a tidal field, for any specified cluster density profile there is a maximum ratio

of half-mass radius to tidal radius, rh/rti, for which virial equilibrium is possible (Chernoff & Weinberg

1990; Fukushige & Heggie 1995). If mass loss drives rh/rti above this maximum, the stars cannot find a

new virial equilibrium, and the entire cluster disrupts. Both the additional mass loss and the propensity

to catastrophic disruption are enhanced in mass-segregated clusters, where the stars losing mass carry a

disproportionate share of the potential energy (Vesperini, McMillan & Portegies Zwart 2009; Gieles et al.

2010). The importance of stellar evolution depends on a star cluster’s initial concentration and ratio of

truncation radius to tidal radius rtr/rti. Clusters with rtr/rti � 1 or W0 & 5 (c & 1) are dense enough to

behave qualitatively like clusters that are not in a tidal field. Clusters with low concentration that already

fill their tidal radii at the start of gas-free evolution are much more vulnerable.

Unfortunately there have been only limited observational studies of c and rtr/rti for young clusters.

Ryon et al. (2015, 2017) survey massive (> 5000 M�) clusters in M83, NGC 628, and NGC 1313, and

find that about half have rh/rti . 0.15 independent of cluster mass, small enough to render mass loss

unimportant. The fraction with larger values of rh/rti increases with age, as previously observed by Elson,

Freeman & Lauer (1989) in the LMC, but too late for stellar mass loss to be effective. However, we caution

that accurate measurements of rh require accurate photometry in clusters’ extended, low surface brightness

halos, which is very difficult to obtain for galaxies at the distances of Ryon et al.’s sample. The result that

the concentration does not correlate with mass is more robust, and appears to hold for OCs in the Milky

Way (based on our examination of Kharchenko et al. 2013’s sample) and the Magellanic Clouds as well

(Fall & Chandar 2012, using the measurements of McLaughlin & van der Marel 2005), where measurements

are easier. For Milky Way GCs, McLaughlin (2000) reports a weak correlation between concentration and

mass, but no such correlation is apparent in the more recent fits of Baumgardt & Hilker (2018). Thus while

there are hints that clusters might be born too concentrated for mass loss to be a significant effect, the

observational case is far from settled. Moreover, we caution that all observations are potentially subject to

both selection bias in favor of more compact clusters and survival bias – a substantial fraction of gas-free

clusters at an age of ≈ 10 Myr might be only weakly bound and have W0 ≈ 2− 3, for example, but these

would be dramatically under-represented in OC catalogs because almost none would survive to reach ages

more than a few tens of Myr.

4.2.2. Relaxation-driven mass loss. Stellar evolution has its greatest effects in the first ∼ 10 − 100 Myr

of a cluster’s lifetime. On much longer time scales, the dominant internal process is mass loss driven by

relaxation, sometimes also referred to as dissolution or evaporation. The underlying mechanism is simple:

because stars with too much energy escape from clusters, the high-energy tail of a cluster’s velocity distri-

bution is underpopulated compared to a Maxwellian. As stars randomly exchange energy via gravitational

interactions, the velocity distribution attempts to relax to a Maxwellian, repopulating the tail. Once stars

scatter to high enough energy by this process, however, they escape through the windows around L1 and
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L2, leaving the tail again underpopulated and continuing the cycle. Throughout the Galactic halo, we see

direct evidence of this process through the disruption of GCs, e.g., Pal 5 (Odenkirchen et al. 1997, 2002),

NGC 5466 (Grillmair & Johnson 2006), and Pal 14 (Sollima et al. 2011). Stars escaping through L1 are

at smaller galactocentric radii and thus move faster in the galaxy than the cluster which gives rise to a

leading stream; stars escaping through L2 are slower than the cluster and therefore trail. The escaping

stars give rise to spectacular, cold stellar streams extending up to 60◦ across the sky (Odenkirchen et al.

2002; Grillmair & Johnson 2006). Limited evidence for the tidal disruption of OCs has been claimed but is

rather less convincing (e.g., Berkeley 17; Bhattacharya et al. 2017).

Since this mass loss process is driven by repopulation of the Maxwellian tail as the velocity distribution

relaxes, the loss rate scales approximately as Ṁrlx ∝ M/trlx, where trlx ≈ 0.1(N/ lnN)(rh/σ) is the relax-

ation time at the half-mass radius, M is the cluster mass, N is the number of stars in the cluster, and σ

is the velocity dispersion. Hénon (1961, 1965a,b) carried out some of the earliest modeling of this process,

finding that Ṁrlx = frlxM/trlx with frlx ≈ 0.05, i.e., clusters lose about 5% of their mass per relaxation

time. If we set N = M/m, where m is the mean stellar mass, and σ ≈
√
GM/rh, the mass loss rate scales

as Ṁrlx ∝
√
ρ, where ρ ∝ M/r3

h and we have dropped the weak mass dependence in lnN . If clusters have

density independent of mass (requiring rh vs. M only a slightly steeper than the relation in Figure 9), or

if they are tidally limited and thus have ρ ≈ ρti independent of M (§ 4.1), then Ṁrlx is independent of M

as well. This process is the justification for the “evolved Schechter” function form introduced in § 2.2 to fit

the globular CMF, and explains how a Schechter-like ICMF could evolve into such a distribution (Fall &

Zhang 2001; McLaughlin & Fall 2008).

While Ṁrlx ∝ M/trlx is a reasonable first approximation, N -body simulations suggest a slightly more

complex dependence. Fukushige & Heggie (2000), Baumgardt (2001) and Baumgardt & Makino (2003)

show that, due to the finite time required for potential escapers to find the L1 or L2 windows and pass

through them, the mass loss timescale depends on the crossing time tcr = rh/σ as well as the relaxation time,

so Ṁrlx ≈ frlxM/(tprlxt
1−p
cr ), where p ≈ 0.7 − 0.8 depending on W0. The corresponding cluster dissolution

timescale is

tdis =
M

Ṁrlx

≈

{
1.6ρ

−1/2
2 M3 Gyr, p = 1

0.6ρ
−1/2
2 M0.7

3 Gyr, p = 0.7
, (21)

where ρ2 = ρ/(100 M� pc−3), M3 = M/(103 M�), and for the numerical evaluation we have used frlx =

0.05, m = 0.5 M�, and lnN = 7.6. Subsequent studies have shown that, in addition to W0, p depends on

the extent to which clusters initially fill their tidal radii (Gieles & Baumgardt 2008; Madrid et al. 2017), the

ratios of the eigenvalues of the tidal tensor (Tanikawa & Fukushige 2010; Madrid et al. 2017), and the mass

spectrum and degree of mass segregation in the cluster (Hong et al. 2013). Goudfrooij & Fall (2016) argue

that p should also depend on cluster mass, and that the observed GC luminosity function implies p ≈ 1

for globulars; however, this analysis does not include possible mass-to-light ratio effects due to correlations

between GC metallicity and formation history.

A number of authors have proposed analytic models for cluster evolution that attempt to capture the

findings of the N -body simulations, though none thus far have been able to capture the full range of

numerical results over all parameter space. Lamers et al. (2005) and Lamers, Baumgardt & Gieles (2010)

propose a model for cluster evolution incorporating the dependence of mass loss on the crossing time and

the initial tidal radius, which gives Ṁrlx ≈ M1−γ/t0, with γ ≈ 0.65 and t0 ∝ 1/Ω, where Ω is the angular

velocity of the cluster’s orbit through its host galaxy. Gieles, Heggie & Zhao (2011) propose a pair of

“unified evolution equations” that capture the process of expansion and subsequent contraction that occurs

when a cluster born with rti < rtr expands to its tidal radius and then shrinks as mass loss reduces that
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radius:

ξ ≡ − Ṅ
N
trlx =

3

5
ζ
tcr

tcr,1
χ ≡ ṫcr

tcr
trlx =

3

2
ζ

(
1− tcr

tcr,1

)
, (22)

where ξ and χ are dimensionless rates of mass loss and cluster expansion and tcr,1 is the crossing time of

the cluster at the point where it has expanded to its tidal radius. The quantity ζ is the fraction of the

total energy conducted per trlx, and has a complex dependence on the stellar mass spectrum and on the

cluster core properties that must be calibrated by N -body simulations. The idea that clusters are born

with rtr < rti and expand during their first ≈ 200 Myr of life is consistent with the tentative findings of

Ryon et al. (2015, 2017), and with the observation that a higher proportion of the older GC population,

though not all, fill their tidal radii (Innanen, Harris & Webbink 1983; Baumgardt et al. 2010).

4.3. External and environmental processes

Our discussion of internal processes implicitly assumed a constant tidal field. However, as clusters orbit

the tidal field they experience may change due to cluster encounters with massive objects, or because the

cluster’s orbit is not a simple circle in the galactic plane. Such changes in the tidal potential cause the

Jacobi surface to move, and sudden perturbations can also alter stellar energies. Both effects can move

stars across the Jacobi surface, thereby unbinding part of a cluster. We now explore processes of this type.

4.3.1. Tidal perturbations. For star clusters with near-circular orbits in a galactic plane, the primary source

of tidal perturbations is encounters with GMCs (Spitzer 1958). If an encounter takes place over a time

shorter than the crossing time of a cluster, one can approximate it as impulsive (e.g., Binney & Tremaine

2008). Formally, this requires that the encounter velocity obey v & b
√
GM/r3

h = 2.1b0r
−3/2
h,0 M

1/2
3 km s−1,

where b is the impact parameter, b0 = b/1 pc, M is the cluster mass, M3 = M/103 M�, and rh is the

cluster half-mass radius, rh,0 = rh/1 pc. Since the typical encounter velocity in the ISM will be of order the

ISM velocity dispersion (≈ 10 km s−1 in local galaxies), encounters between GMCs and all but the most

massive clusters tend to be impulsive. Impulsive encounters can be further classified into catastrophic ones

that completely disrupt the cluster, and diffusive ones that do not. Catastrophic disruption occurs only

for perturbers that are denser than the cluster, while most star clusters are at least somewhat denser than

Milky Way GMCs, n ≈ 100 cm−3 (c.f. Figure 9), so the diffusive regime is more common.

The specific energy added per tidal shock in the diffusive regime, and the resulting mass loss rate, has

been discussed by many authors (e.g., Gnedin & Ostriker 1999; Gieles, Athanassoula & Portegies Zwart

2007; Prieto & Gnedin 2008; Binney & Tremaine 2008). For the case of shocking by GMCs of finite size,

Gieles et al. (2006) obtain the approximate relations

∆E

E
≈ f(b̃)

(
MGMC

M

)2(
σ

vmax

)2
∆M

M
≈ fM

∆E

E
, (23)

where E and M are the cluster total energy and mass, ∆E and ∆M are the changes in these quantities

due to the encounter (with a sign convention whereby ∆M > 0 corresponds to mass loss), fM ≈ 0.25 is

the ratio of fractional mass loss to fractional energy gain (less than unity since stars escape with finite

energy), σ =
√
GM/rh is the stellar velocity dispersion in a cluster, vmax is the maximum velocity during

the encounter, and f(b̃) is a numerical factor that depends on the dimensionless impact parameter b̃ ≡ b/rh
as f(b̃) → const for b̃ � 1 and f(b̃) → b̃−4 for b̃ � 1. The time to disrupt a cluster, tdis = M/Ṁ , can be

found by integrating over encounters with a population of GMCs. Second-order energy injection (Kundic

& Ostriker 1995) reduces the Gieles et al. (2006) disruption time by a factor Csh ' 0.3 (Kruijssen et al.
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2011) so that the disruption time for a cluster of mass M becomes

tdis ≈
Csh√
π
fdis

σISM

GΣGMC

(
ρ

ρGMC

)
≈ 1.6σ1Σ−1

2

(
ρ/ρGMC

1000

)
Gyr (24)

where σISM is the velocity dispersion of the ISM (assumed equal to the velocity dispersion of the clusters),

ΣGMC is the surface density of an individual GMC, ρGMC is the mass density of GMCs in the ISM (not the

GMC internal density), ρ = 3M/8πr3
h is the cluster density, and fdis is a factor of order unity that depends

on gravitational focusing and cluster structure; for Gieles et al. (2006)’s favored parameters, fdis ≈ 0.4.

We have scaled to Milky Way values (c.f. § 3.1.1) for the other parameters: σ1 = σISM/10 km s−1 ≈ 1,

Σ2 = ΣGMC/100 M� pc−2 ≈ 1, and ρ/ρGMC ≈ 1000. The 1.6 Gyr disruption timescale is substantially

longer than earlier estimates (e.g., Binney & Tremaine 2008), largely because Gieles et al. (2006) find

fM ≈ 0.25, while some earlier analytic models adopted fM ≈ 1.

One factor that could increase the disruption time is that tidal shocks tend to be self-limiting: a first

tidal shock strips off the most weakly bound stars, but the timescale for the cluster to repopulate the

high energy orbits these stars occupied is dictated by two-body relaxation (§ 4.2.2), so that subsequent

tidal shocks separated in time by less than trlx remove much less mass (Kruijssen 2015; Gieles & Renaud

2016). On the other hand, the numerical evaluation in Equation 24 could underestimate the importance

of tidal heating because it is based on mean conditions in the ISM. However, star clusters are formed in

regions of higher than average gas density and structure, i.e., larger ρGMC and ΣGMC. Star cluster locations

remain correlated out to ages ≈ 100 Myr (Grasha et al. 2017a), and during this time they likely experience

enhanced tidal perturbations, a phenomenon that Kruijssen et al. (2011) dubbed the “cruel cradle effect”.

Several authors have suggested this effect may explain why cluster number counts decline from 10−100 Myr,

when no other mechanism except stellar mass loss (§ 4.2.1) is expected to operate (Elmegreen & Hunter

2010; Kruijssen 2012; Miholics, Kruijssen & Sills 2017). It is likely to be particularly important in gas-rich

environments such as high-redshift galaxies and local mergers, and may explain why globular clusters have

a lognormal rather than a power-law mass function: since tdis ∝ ρ, if density increases with mass then

low-mass clusters will be preferentially destroyed by tides, while massive clusters will survive (Elmegreen

2010; Kruijssen 2015). However, the importance of this effect depends on the assumed mass-radius relation.

Most published models assume mass-independent cluster radii, so ρ ∝ M , which tends to strengthen the

preferential destruction of low-mass clusters compared to the mass-radius relation shown in § 2.5.

This situation is somewhat different for clusters in disk-crossing or bulge-crossing orbits, which experi-

ence changing tides as they pass through a disk or bulge. During each passage the galaxy exerts a pinch

compression on the cluster that acts normal to the disk. The formalism for modelling the effects of a

disk passage is largely the same as that for GMC encounters, simply with a different frequency and shock

strength, and with some subtle modifications for the fact that GMC tidal shocks are 2D, while disk tidal

shocks are 1D (Gnedin & Ostriker 1997). Starting with Ostriker, Spitzer & Chevalier (1972), there is an

extensive literature on transiting clusters, with an in-depth review provided by Binney & Tremaine (2008).

The timescale for complete destruction of globulars through most of the Milky Way disk is much longer

than a Hubble time, but erosion of the outer stars requires only ≈ 10 Gyr. Thus, the stellar escape feeding

the cold streams observed in Pal 5 (Odenkirchen et al. 1997, 2002), for example, may have been exacerbated

by repeated crossings. Globulars that transit the bulge of a galaxy are subjected to much stronger tides,

and may lose substantial fractions of their mass in well under a Hubble time (Madrid et al. 2017).

For open clusters, which are less massive and dense, disk crossing is more perilous. Martinez-Medina

et al. (2017, see also Webb et al. 2014) find that the destruction rate is nearly independent of vertical

velocity (∝ v−0.2
z ) in conflict with the v−2

z dependence found by Ostriker, Spitzer & Chevalier (1972);

Martinez-Medina et al. find the number of disk crossings is more important than the velocity. Clusters far

from the plane transit the disk only rarely, whereas clusters close to the plane experience a weaker gradient
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when they do transit. Consequently, clusters a few hundred parsecs from the plane are the most vulnerable

to destruction by tidal shocking. This may explain the clear dichotomy of OCs close to the plane and GCs

far from the plane, with very little crossover in phase space. Interestingly, the vast majority of reported

OCs more than a few hundred parsecs off the plane are not confirmed in the latest Gaia DR2 analysis

(Cantat-Gaudin et al. 2018).

4.3.2. Migration and environment. Several mechanisms alter the orbits of star clusters as they evolve,

potentially shaping their demographics. Here we discuss processes that move clusters within a single

galaxy, deferring discussion of galaxy-galaxy interaction to § 4.4.2. One potentially important mechanism

is dynamical friction, which tends to move clusters toward galactic centers by causing them to lose angular

momentum. For a cluster of mass M moving with velocity vc through an inertial stellar field described by

a distribution function f(v) for stars with mass m and velocity v, Chandrasekhar (1943) showed

dvc
dt

= −16π2G ln Λ
m(m+M)

v3
c

∫ vc

0

v2f(v) dv vc (25)

for which ln Λ is the Coulomb logarithm; this expression can be simplified considerably if f(v) is a

Maxwellian. Massive clusters decelerate more rapidly than lower mass ones (dvc/dt ∝ M for M � m),

because they create larger wakes. This is one of the few mechanisms that encourages the destruction of the

most massive clusters: Bekki (2010) finds that dynamical friction causes clusters with masses & 2 × 105

M� in the disks of sub-L∗ galaxies to sink to the galactic center in less than a Hubble time, where stronger

tides are likely to destroy them (Gerhard 2001). The effect is smaller in larger galaxies like the Milky Way.

Radial migration driven by transient spiral density waves, first discussed by Sellwood & Binney (2002)

and demonstrated numerically by Roškar et al. (2008), can move stars inward or outward. The same

mechanism works for clusters, and is non-destructive to them since clusters have internal crossing times

much shorter than the time required for them to transit a spiral density wave (Gieles, Athanassoula &

Portegies Zwart 2007). Migration occurs because a spiral perturbation with pattern speed ΩP can modify

an object’s energy E and angular momentum J while conserving its Jacobi integral IJ ; in the (E, J) plane,

objects move along lines of constant IJ = E − ΩPJ . A single spiral wave near co-rotation can perturb the

angular momentum by 20% without significant heating, moving objects from one circular orbit to another,

inwards or outwards. Multiple transient spirals lead to a random walk in the (E, J) plane at constant IJ
(Dehnen 2000), so that substantial variations in the angular momentum of an object can occur over Gyr

timescales. By contrast, long-term spiral arms produce no net effect, because perturbations as an object

enters an arm are cancelled by those as it exits (Lynden-Bell & Kalnajs 1972). Objects that oscillate

far from the plane or are on highly radial orbits are much less influenced by the migration mechanism.

Minchev & Famaey (2010) and Minchev et al. (2011) propose a related mechanism that does not rely on

transience: quasi-chaotic interference between resonances from multiple rotating patterns, e.g., the bar and

the spiral arms, with different pattern speeds (c.f. Brunetti, Chiappini & Pfenniger 2011). J́ılková et al.

(2012) and Quillen et al. (2018b) investigate this resonance overlap and find that outward migration is

possible but relatively inefficient. External influences can also drive radial migration, in particular, radial

in-plane orbiting galaxies that come close enough to strongly perturb the disk (Quillen et al. 2009).

Minchev & Famaey (2010) provide a comprehensive discussion of the evidence for strong migration of

individual stars over billions of years, in particular, the ∼1 dex scatter in [Fe/H] at all radii. The high

local fraction of metal-rich stars may also be evidence of migration (Kordopatis et al. 2015), since the local

ISM has somewhat sub-solar metallicity (Nieva & Przybilla 2012). The case for migrating OCs is less clear.

There are at least half a dozen supersolar metallicity OCs within ∼ 1 kpc of the Solar Circle (Quillen et al.

2018b). Moreover, Friel (1995) finds that there is a large scatter in the metallicity and age of OCs at all

radii.
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However, given the lower statistics, it is unclear whether this provides compelling evidence for cluster

migration within the disk, particularly since there is an alternative possibility: OCs that seem out of place

with respect to the average properties of their environment may have been accreted from infalling dwarfs.

Carraro & Bensby (2009) argue that the OCs Berkeley 29 and Saurer 1 appear to be associated with the

disrupting Sgr dwarf galaxy, and the case for some Milky Way GCs having arrived with Sgr is compelling:

Gaia has shown that four GCs (Arp 2, Terzan 7, Terzan 8, M54) confined to the Galaxy’s central core are

co-moving (q.v. Vasiliev 2018). An OC that is arguably an even stronger candidate for having arrived by

infall rather than migration is NGC 6791, an old (∼ 8.3 Gyr), massive (∼ 4000 M�), extremely metal-rich

([Fe/H] ≈ +0.3) OC along the Solar Circle (Boesgaard, Lum & Deliyannis 2015), 4 kpc from the Sun and

0.8 kpc above the plane (Carraro et al. 2006; Origlia et al. 2006). Its large vertical distance argues against

radial migration from the bulge region. While a likely host for infall has not been identified to date, Gaia

DR2 data has begun to provide evidence that massive accreted systems like Sgr are dispersed throughout

the Galaxy (e.g., Gaia-Enceladus; Helmi et al. 2018b). We anticipate that the more comprehensive Gaia

data release (DR3) in 2020 will significantly clarify whether infall can account for all the anomalous OCs,

or whether some must be the result of migration.

4.4. Models of the full cluster population

Having reviewed the individual processes affecting gas-free clusters, we now discuss attempts to combine

them with cluster formation into models for the complete cluster population. We first consider clusters

confined to galactic disks, and second examine clusters outside of disks.

4.4.1. Disk clusters. Comparison of the observed distribution of cluster masses and ages with theoretical

models sheds light on the rate at which clusters are born and on the processes that destroy them. If the

mass of a cluster is determined by its initial mass, Mi, and its age, T , then the number of surviving clusters

in a given age range is the same as that when they were born, so that (Fall & Zhang 2001; Lamers et al.

2005; Fall, Chandar & Whitmore 2009)

∂2N

∂M ∂T
= C(T )MαMi

i

(
∂Mi

∂M

)
T

, (26)

where C(T ) is proportional to the birthrate of clusters with a current age T and where we have assumed

that the ICMF is a power law in the range of masses considered; as discussed in § 2.2, αMi ≈ −2. Insofar

as the effects of stellar evolution occur prior to relaxation (a good approximation) or tidal effects (a good

approximation after the cluster has left its natal complex), one can define M0 = µev(T )Mi as the mass at

the onset of relaxation and tidal effects (Lamers et al. 2005), where µev(T ) drops from unity to ∼ 0.25−0.5

during the first few 107 years of the cluster’s life.

Two classes of models for cluster evolution have been considered, mass-independent destruction (MID;

Fall, Chandar & Whitmore 2005; Whitmore, Chandar & Fall 2007; Fall, Chandar & Whitmore 2009) and

mass-dependent destruction (MDD; Boutloukos & Lamers 2003; Lamers et al. 2005; Lamers, Baumgardt

& Gieles 2010). For the MID case, the cluster distribution function breaks up into the product of a mass-

dependent term and an age-dependent term, which are taken as power laws, so that

d2N

dM dT
∝MαMiTαT . (27)

Since the effects of stellar evolution are approximately independent of mass as long as initial concentration

c does not depend on mass, its effects are naturally included in this formulation. This model is phenomeno-

logical, since the rate of cluster destruction is not calculated.
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For the MDD case, the destruction time is generally taken to be a power-law function of mass (Bout-

loukos & Lamers 2003; Lamers et al. 2005), dM/dt = −M/(t0M
γ), where M is measured in solar masses.

If t0 is constant, then (Lamers et al. 2005)

∂2N

∂M ∂T
=

C(T )µev(T )MαMi

[1 + γT/(t0Mγ)](γ+1)/γ
, (28)

Values of γ estimated from observation (e.g., Boutloukos & Lamers 2003; Gieles 2009) and N -body sim-

ulations (Lamers et al. 2005; Lamers, Baumgardt & Gieles 2010) are usually in the range 0.6 − 0.7 (see

§ 4.2.2). At late times or low masses, the second term in the denominator dominates, so that the distribu-

tion function becomes proportional to MαMi+γT−(γ+1)/γ . However, because clusters fade with time, it is

sometimes the case that in order to be complete, cluster samples must be constructed so that the minimum

mass is large enough that the second term is not dominant. It is not clear that any extragalactic sample of

clusters has sufficient dynamic range to clearly show the break in the slope of the mass function.

There are two complications with the MDD model. First, t0 may not be constant: clusters move from

a dense environment where they are born to the normal ISM over a period that can extend to 100 Myr

(and much longer in galaxy mergers), and over this time t0 is likely to increase (Elmegreen & Hunter 2010;

Kruijssen et al. 2011). Second, the simulations used to calibrate this model (e.g., Baumgardt & Makino

2003; Lamers, Baumgardt & Gieles 2010) have included only relaxation, not tidal losses due to encounters

with GMCs, yet in the Galaxy the latter process is likely dominant. The characteristic destruction time for

clusters due to GMCs is a few hundred Myr (§ 4.3.1), while for a 104 M� cluster the disruption time due to

relaxation (confirmed by simulations – Lamers et al. 2005) is multiple Gyr (Equation 21). The time scale

for destruction by encounters with GMCs depends only on the density of the cluster, so agreement between

the observed and simulated values of γ occurs only if ρ ∝ M0.6−0.7 – possible given the uncertainties in

Figure 9, but by no means certain.

Observational evidence has been marshalled on both sides of this debate, which is closely tied to the

issue of inclusive versus exclusive catalog construction discussed in § 2.1.2 and § 2.3. Equation 27 predicts a

cluster age distribution with constant αT , and thus is “universal”, while Equation 28 predicts a value of αT
that smoothly varies from 0, for γT/(t0M

γ)� 1, to −(γ + 1)/γ, for the opposite limit. Thus authors who

construct exclusive catalogs, which tend to produce αT close to zero at early ages and then lower values at

older ages, generally favor MDD models. Authors who construct inclusive catalogs, which generally have

αT close to −1 at all ages, tend to favor MID models.

In the latter category, Whitmore, Chandar & Fall (2007) and Fall, Chandar & Whitmore (2009) show

that the data on clusters in the Antennae are well described by a power law of the form in Equation 27

and suggest that this is a “quasi-universal law” of cluster destruction. Fall & Chandar (2012) extended this

analysis to clusters in several other galaxies, including the SMC, the LMC, and M83; in all cases, dN/dM

and dN/dT exhibit power law behavior with indexes αM ≈ −2 and αT ≈ −0.8. However, for Milky Way

OCs, αT ' −0.6 to −0.5 over the age range 10 − 300 Myr (Figure 6), inconsistent with universality. Fall

& Chandar 2012 also search for deviations from power-law behavior in the LMC as predicted by the MDD

model, by finding clusters with both γT > t0M
γ and γT < t0M

γ . They find that simple MDD models

fail for the LMC. However, they did not include stellar mass loss, which is often included in MDD models

(e.g., Lamers, Baumgardt & Gieles 2010), allow for a time-dependent destruction time (e.g., Elmegreen &

Hunter 2010), or consider the possibility that some of the youngest clusters may be unbound and therefore

dissipate rapidly.

Supporting the MDD picture, Lamers et al. (2005) show that the cluster population within 600 pc of

the Sun (Kharchenko et al. 2005) is consistent with dN/dT calculated from Equation 28 with γ = 0.62 and

a 1.0 Gyr destruction time for 104 M� clusters; the data cannot be fit by a power law. Bastian et al. (2012)
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generalize the cluster evolution model to include both a mass-dependent and mass-independent destruction

term, and find that MID and MDD models give equally good fits to two fields in M83. Adamo et al. (2017)

find evidence for mass-dependent destruction of clusters with M < 104 M� in NGC 628, and Messa et al.

(2018b) report a similar result for M51. In both cases, however, the evidence comes from the lowest mass

bin, so deeper observations or statistical methods for making better use of partially-complete data (e.g.,

Krumholz et al. 2018) would be beneficial.

Theoretically, the key difference between the two models lies in the mass dependence of the cluster

disruption time, tdis. As discussed in § 4.3.1, the dominant destruction process for disk clusters is likely

tidal shocking by GMCs, yielding disruption time proportional to the cluster density, tdis ∝ ρ. If ρ is

approximately independent of mass, then so is tdis and one gets the MID model. Mass-independent densities

are in fact expected for tidally limited clusters (Fall & Chandar 2012), but the fact that observed young

clusters have EFF rather than King profiles (§ 4.1) and (at least potentially) underfill their tidal radii (Ryon

et al. 2015, 2017) suggests they have not yet reached equilibrium. On the other hand, advocates of the

MDD model (e.g., Lamers et al. 2005) assume ρ ∝M0.6−0.7, so that the mass dependence of tidal disruption

is similar to that for 2-body relaxation. Their models can therefore implicitly include tidal disruption by

GMCs, although not with the correct rate. Unfortunately, cluster densities are difficult to determine (§ 2.5),

so to date it has not been possible to use measurements of ρ vs. M to distinguish the two models.

Miholics, Kruijssen & Sills (2017) carry out simulations of isolated galaxies using a subgrid model for the

formation and evolution of star clusters (Kruijssen et al. 2011, 2012b); the model includes both relaxation

and encounters with GMCs. They demonstrate that, in the MDD model, the median age of clusters in a

sample is proportional to t0, and the median age depends on the surface density and velocity dispersion of

the gas. Comparing with observations of M31 (outer galaxy), M51 (three mass ranges), and M83 (inner

and outer regions), they find the best fit for the mass dependence of the median age is tmed ∝ M0.54. In

all their models, dN/dT decreases with age even though the star formation rates are roughly constant, and

they are able to fit the observed median ages for the six cluster samples to within 0.2 dex, ranging from

107.3 yr for clusters in M51 with masses greater than 103 M� to 108.3 yr for clusters in the outer parts of

M31 and M83. This more complete model for cluster evolution is more complex than the simple MID and

MDD models discussed above, and it demonstrates that cluster destruction is environmentally dependent.

4.4.2. Non-disk clusters. All star clusters, including the progenitors of GCs, likely began their lives in the

disk of some galaxy (though see Mandelker et al. 2018 for a model where this is not true). Thus clusters

found outside galaxy disks necessarily have complex histories. Studies of these histories therefore focus on

determining possible origin sites for the clusters we see today, on the processes by which those clusters

reached their present locations. A great deal of this work has been devoted to modeling the cosmological

assembly history of the Milky Way’s GC system, and to explaining observed features such as its color

bimodality and color-magnitude relationships (the “blue tilt”; Brodie & Strader 2006). These topics are

beyond the scope of our review, which we limit to processes affecting star clusters in general, rather than

the specific histories of GCs.

Since the transfer of clusters out of disks involves strong tides, simulations of the origin of non-disk

clusters must model tidal effects. Since galactic and cosmological simulations cannot resolve cluster interiors

(§ 3.5.3), they cannot do so directly, and instead the usual approach is to treat each star cluster as a point

mass that is either formed self-consistently in the simulation or inserted following some prescribed initial

distribution. As the particle moves along its orbit, one records the tidal potential to which it is subject,

and uses this to calculate cluster evolution from an analytic model (e.g., Prieto & Gnedin 2008; Kruijssen

et al. 2011; Brockamp et al. 2014; Rossi & Hurley 2015b; Carlberg 2018; Pfeffer et al. 2018) or via a direct

N -body simulation (e.g., Renaud & Gieles 2013; Rieder et al. 2013; Rossi & Hurley 2015a; Mamikonyan
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et al. 2017). The latter approach is more accurate, but due to its expense one can only simulate a few

examples, and for less than a full Hubble time.

One obvious potential site for the formation of non-disk clusters is in major galaxy mergers such as the

Antennae. Renaud & Gieles (2013) and Kruijssen et al. (2012b) both simulate Antennae-like mergers, but

reach opposite conclusions: Renaud & Gieles find that the merger has little effect on the cluster population,

while Kruijssen et al. find that it transforms the CMF from Schechter-like to lognormal like. The Kruijssen

et al. results are likely more reliable. They include gas and form clusters self-consistently during the

merger, while Renaud & Gieles carry out pure N -body simulations and study only pre-existing clusters;

both differences produce weaker tides in Renaud & Gieles’s simulations. Renaud & Gieles also initialize

their clusters with much smaller radii, making them more resistant to tidal disruption.

Dwarf galaxies represent another potential formation site for clusters that end up in the halos of larger

galaxies such as the Milky Way: clusters form in the dwarf (and are therefore metal-poor, as observed), and

then become part of the halo when the larger galaxy accretes and tidally strips the dwarf. As discussed in

§ 4.3.2, there are multiple Milky Way clusters that may have originated in this way. Simulations suggest that

the accretion process is gentle, so accreted clusters do not experience major tidal losses, and quickly adjust

to their new environments and become indistinguishable, except in their abundances, from the pre-existing

cluster population (Miholics, Webb & Sills 2014, 2016; Bianchini et al. 2015).

Exploring the full GC population requires cosmological simulations. Unfortunately, it is not presently

possible to use the same simulations to study both the formation of GCs and their subsequent evolution

(see Forbes et al. 2018 for more discussion). Simulations that can resolve cluster formation (e.g., Kimm

et al. 2016; Ricotti, Parry & Gnedin 2016; Li et al. 2017; Li, Gnedin & Gnedin 2018; Kim et al. 2018)

are too expensive to run to redshift zero, so studies that reach the present use potential GC progenitors

inserted by hand. Different authors make different assumptions about how this should be done. Prieto &

Gnedin (2008) and Carlberg (2018) use dark matter-only simulations; the former initialize cluster particles

based on an analytic model of the baryonic mass distribution, while the latter adopt a randomly-oriented

disk. They also assume different redshift distributions. Renaud, Agertz & Gieles (2017) and Pfeffer et al.

(2018) use dark matter plus baryon cosmological simulations, with Renaud, Agertz & Gieles assuming that

clusters follow the distribution of all newly-formed stars and Pfeffer et al. using the analytic models of

Kruijssen (2012) and Reina-Campos & Kruijssen (2017) to vary Γ and the ICMF depending on local ISM

conditions.

The conclusions are as diverse as the sets of initial conditions: Prieto & Gnedin (2008) and Pfeffer et al.

(2018) find that tides and two-body relaxation are able to transform an initially-power-law distribution

of cluster masses into a lognormal, consistent with the observed globular CMF. Renaud, Agertz & Gieles

(2017) reach the opposite conclusion, finding that their test clusters experience tides too weak to produce

such a radical change. The difference is likely because their recipe for cluster formation – clusters simply

follow star formation, in contrast to Prieto & Gnedin’s prescribed distribution or Pfeffer et al.’s variable Γ

and ICMF – places clusters on orbits where they experience weaker tides. Similarly, Carlberg (2018) finds

that the effectiveness of tides is sensitive to the assumed distribution of redshifts for cluster formation. As

for the ICMF (§ 3.5.3), at present simulation outcomes appear to depend primarily on subgrid recipes, and

thus have little predictive power. Fortunately, we are likely to gain far better observational constraints once

JWST launches, since it should narrow down the range of plausible models considerably.

5. AFTERLIFE

The clusters we observe today are the surviving remnant of a much larger population that have now

dissolved. However, within the Milky Way it is possible to reconstruct some of these clusters via a variety
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of techniques. Doing so provides important clues about the cluster formation and dispersal process, the

Galactic potential and, for clusters in the halo, the nature of dark matter. We therefore focus this final

section on cluster reconstruction using kinematic (§ 5.1), action-angle (§ 5.2), and chemical tagging methods

(§ 5.3). This field is in its infancy, so the discussion is necessarily more speculative than that up to this

point.

5.1. Kinematics

The traditional method for cluster reconstruction is to find “moving groups”: clusters of stars in velocity

space.19 Clustering in velocity space is useful because unbound stars disperse in position on a timescale of

a crossing time (a few Myr), but only spread out in velocity over timescales of a substantial fraction of their

orbital period in the Galaxy (tens of Myr). This technique has a long and checkered history (Griffin 1998)

with some early identified groups being questioned in later analysis (q.v. Taylor 2000), reminiscent of the

“faux clusters” identified in Gaia DR2 (Cantat-Gaudin et al. 2018). Nonetheless, it remains a powerful

method for finding disrupted clusters.

Within the disk, Dehnen (1998) first used the Hipparcos survey to identify kinematic substructure in the

(U, V ) plane for a very local sample (D . 100 pc); he identified known star clusters, but also discovered the

previously-unknown Hercules stream. Bensby et al. (2007) showed that this structure is inhomogeneous in

its abundances, and therefore more likely to be stars trapped in a resonance (e.g., Quillen et al. 2018a) than

a disrupting cluster. Subsequent wavelet analysis of the Hipparcos survey combined with the RAVE survey

identified many more local clumps in the (U, V ) plane, although they have proven difficult to interpret

(Antoja et al. 2012). While resonant streams are interesting, they are “false positives” from the standpoint

of cluster reconstruction. One major challenge for kinematic searches is that the expected rate of such false

positives is unknown. The 2D simulations of De Simone, Wu & Tremaine (2004) suggest it is high, but we

suspect that it will be lower in a 3D simulation due to the extra degree of freedom. For objects that are real

disrupted clusters, one can use dynamical traceback methods to determine the age and other properties of

the original cluster (de Zeeuw et al. 1999; Riedel et al. 2017).

The halo has a great deal of substructure, but most known structures are associated with the disrupting

Sgr dwarf (Helmi 2008). Exceptions include cold halo streams like those extending from the GC Pal 5

(§ 4.2.2). There are similar linear structures such as GD-1 (Grillmair & Johnson 2006) and the “Jet”

stream (Jethwa et al. 2018) not associated with a surviving progenitor; these are likely clusters that have

fully disrupted (e.g., Koposov, Rix & Hogg 2010). Some halo substructures of comparable mass have only

been identified kinematically (Kepley et al. 2007) or, for an assumed Galactic potential, by converting from

kinematic coordinates to energy-angular momentum (Helmi et al. 2017) or angular momentum-eccentricity

space (Helmi et al. 2006). Since Gaia DR2, new studies (q.v. Antoja et al. 2018) reveal many more

substructures in the (U, V ) plane, but follow-up work to identify them has only just begun.

5.2. Action-angle space

Kinematic reconstruction fails at ages & 100 Myr because differential acceleration along stars’ orbits makes

them disperse in velocity space. However, while velocities change as stars orbit, there are conserved quan-

tities that do not, at least to the extent that we can approximate the Galactic potential as smooth and

19This space is usually described by the three velocity components (U, V,W ), where U is toward the Galactic
Center, V is the velocity in the Galactic plane along the direction of the Sun’s orbit, and W is the velocity out of
the plane, oriented so the coordinate system is right-handed. Velocities are measured relative to the Local Standard
of Rest (Bland-Hawthorn & Gerhard 2016).
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DISRUPTED STAR CLUSTERS AS PROBES

The coldest streams from disrupting star clusters are proving to be useful probes of the shape and enclosed

mass of the Galaxy (Bowden, Belokurov & Evans 2015; Bovy et al. 2016). Recent observations confirm that

GD-1 has high-contrast gaps along its length (Price-Whelan & Bonaca 2018). Several authors have argued

that these are useful probes of the halo’s dark matter substructure, since substructures would cause diffusion

of stellar orbits that would blur out sharp features over time (Carlberg 2016; Bovy, Erkal & Sanders 2017).

time-independent. In principle these quantities act as labels that are fixed when stars form, allowing re-

construction of clusters long after they have dispersed in velocity. This insight motivates the idea of cluster

reconstruction in action-angle space (J,θ), a set of canonical conjugate coordinates defined by (Binney &

Tremaine 2008)

2πJi =

∮
ẋi dxi =

1

Ωi

∫ 2π

0

(ẋ)2 dθi (29)

where xi are Cartesian coordinates and Ωi are the orbital frequencies. For each star, the equations of

motion with respect to the Hamiltonian H are

θ̇ =
∂H

∂J
= Ω(J) J̇ = −∂H

∂θ
= 0 (30)

An orbit can be traced with the solution θi(t) = Ωi(t) + Ωi,0. For the inertial Galactic system, (R,φ, z)

coordinates20 are most often used (even for halo studies) such that θ = (θR, θφ, θz) and J = (JR, Jφ, Jz)

where Jφ ≡ Lz, i.e., Jφ is the angular momentum with respect to the spin axis. A stellar orbit is described

by the three actions J. Orbits with Jz = 0 lie in the Galactic plane, orbits with JR = 0 are circular, and

we choose units so that a circular orbit at the Solar Circle has Jφ = 1; circular orbits with Jφ < 1 lie inside

the Solar Circle. The orbits of all stars in the Galaxy are described by the distribution function f(J).

To find clusters in action-angle space one must convert the observed positions and velocities of stars

into actions. This requires knowledge of the Galactic potential Φ, which enters the Hamiltonian H. We will

not fully review efforts to measure the Galactic potential and the stellar density distribution, which must

be determined simultaneously. Arguably, the best efforts to date are from the RAVE survey, which provides

an explicit fit for the vertical stellar density distribution (Piffl et al. 2014) as opposed to the parameterized

potentials used in earlier work (e.g. McMillan 2011). Moreover, Φ is at least weakly time-dependent. In

addition to the outer warp, there is clear evidence near and far of large-scale corrugation waves propagating

throughout the disk (e.g. Xu et al. 2015; Antoja et al. 2018). The spiral arms and bar provide additional

challenges.

Even with the uncertainties, the action-angle approach reveals rich structure throughout the halo and

Galactic disk. Sellwood (2010) mapped Hipparcos moving groups to action space and found that this

improved the delineation of the Hyades stream, but that other structures were barely evident. With Gaia

DR2, the situation has improved and over a much larger volume than Hipparcos. Trick, Coronado & Rix

(2018) show that the highest density peaks in the (U, V ) plane map to the highest density peaks in the

action plane, specifically (
√
JR, Jφ = Lz), but the mapping is not simple. They trace structure out to 1.5

kpc from the Sun and find much of it has low vertical action, Jz, suggestive of disk resonances that operate

20In this coordinate system, R is the distance from the Galactic Center, z is distance out of the Galactic plane,
and the line from the Sun to Sgr A∗ defines φ = 0.
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most efficiently in the plane (Katz et al. 2018). The Helmi streams were discovered with a dozen or fewer

stars using action analysis (Helmi 2008), structures that were invisible against the background in kinematic

space. Arguably the most impressive action-based discovery to date is Gaia-Enceladus, the remnants of a

massive dwarf spread throughout the inner Galaxy that was accreted long before Sgr (Helmi et al. 2018a).

To date, no OCs or GCs (or their streams) have been discovered using actions, but these are early days.

There are many clumps in this space that have yet to be followed up. Stars bunched in phase space are

typically spread across the sky requiring extended observing programs over 1− 2 years.

5.3. Chemical tagging

Dynamical “invariants” like actions are useful labels for reconstruction, but they are not strictly conserved

over a star’s lifetime, e.g., when transiting the spiral arm or bar. These time-dependent features of the

Galactic potential induce perturbations in the actions of the stars they affect; indeed, non-conservation of Jφ
due to arms and bars is responsible for stellar migration (§ 4.3.2), and the same structures also likely cause

non-conservation of JR (Solway, Sellwood & Schönrich 2012). This ultimately limits how far back in time

action-angle reconstructions for clusters in the disk can go. Longer-term reconstructions therefore require

another invariant, for which elemental abundances are a natural choice. Stars conserve their abundances

over almost their entire lives, and stars in the same cluster have nearly-identical abundances (§ 2.6). This led

Freeman & Bland-Hawthorn (2002) to suggest that, with abundance data of sufficient quality and enough

elements, clusters that have dispersed even in action space could be detected via clustering in C-space,

defined so each star is a point in a high dimensional space, i.e., C([Fe/H], [α/Fe], [X1/Fe], [X2/Fe], . . .).

Weak chemical tagging, defined as identifying distinct components separated by a surface in C-space, has

been used to good effect. For example, stars in the Solar neighborhood show a clear bimodality in C([Fe/H],

[α/Fe]) (e.g., Bensby et al. 2005) and C([α/Fe], [(C+N)/Fe], [Al/Fe], [Mg/Mn]) (Hawkins et al. 2015). The

Sgr dwarf and stream separate cleanly from all components of the Milky Way in the high-dimensional space

C([(C+N)/Fe], [O/Fe], [Mg/Fe], [Al/Fe], [Mn/Fe], [Ni/Fe]) (Hasselquist et al. 2017). Reconstructing star

clusters, however, requires strong chemical tagging, defined as identifying a cluster in C-space against the

background (q.v. Ting et al. 2012; Ting, Conroy & Goodman 2015). In searching for dissolved clusters, the

choice of elements depends on the target. OCs are highly homogeneous so many elements are prospective

candidates, while GCs are inhomogeneous in some or all elements, but have distinctive anti-correlations,

e.g., O/Mg vs. Na/Al. Martell et al. (2016) use the latter signature to identify stars in the Galactic halo from

long-dissolved GCs. Ting, Conroy & Goodman (2015) search for clustering of abundances in the APOGEE

survey of the α-rich disk, but do not identify any previously-unknown clusters. Related techniques applied

to the α-poor disk using the GALAH survey have met with more success (Quillen et al. 2015; Kos et al.

2018a). Even when clusters are found, however, there may not be a simple one-to-one mapping between

C-space clusters and OCs. For example, De Silva et al. (2015) identify a pair of OCs that have identical

radial velocities and overlapping stars in C-space. These were likely formed in close proximity, so abundance

analysis does correctly identify real structures, but they are not necessarily the same clusters one would

identify in physical space.

As for kinematics, strong chemical tagging suffers from a poorly-constrained false positive rate. Ness

et al. (2018) identify pairs of field stars with identical abundance patterns that are unlikely to have been born

in the same cloud, but the overall frequency of such chance pairs remains uncertain. The problem should

be less severe at low [Fe/H], where there are fewer stars and thus a reduced background of interlopers. This

led Bland-Hawthorn et al. (2010) to propose applying chemical tagging to the Milky Way’s dwarf satellites

rather than in its disk. Prima facie, this appears to work (e.g., Karlsson et al. 2012; Webster, Frebel

& Bland-Hawthorn 2016), and if confirmed the patterns identified thus far are evidence of star clusters

significantly more metal-poor than the lowest metallicity GCs, which have [Fe/H] ≈ −2.4.
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The challenges of strong chemical tagging mean that, thus far, it has been most effective when used

to characterize groups found by other methods, and to test for potential membership. For example, most

stellar streams identified to date appear to be inhomogeneous, implying that they are not disrupting star

clusters, and are instead either stars trapped by disc resonances (e.g., Bensby et al. 2007) or the remnants

of much more massive (> 108M�) systems (e.g., Hasselquist et al. 2017). However, a few streams have

proven to be homogeneous, e.g., the 2-Gyr old moving group HR 1614 (Feltzing & Holmberg 2000; De

Silva et al. 2007), first identified by Eggen (1978) and confirmed with Hipparcos (Eggen 1998). For these

systems, elemental homogeneity provides strong evidence that the progenitor is a disrupted star cluster. In

the future, it seems likely that the most powerful applications of chemical tagging will continue to be in

conjunction with other methods (e.g., Quillen et al. 2015) rather than by itself. Kos et al. (2018a) provide an

impressive example of how such combinations can work, by combining chemical tagging and Gaia proper

motions to identify Pleiades members several degrees from the parent cluster. To date, other identified

streams for which chemical tagging may prove useful are faint, so follow-up work awaits multi-object high

resolution spectrographs on the ELTs (e.g., MANIFEST on GMT).

6. CONCLUSIONS AND FUTURE PROSPECTS

Star clusters stand at a crossroads of scales. Traditionally star cluster research has focused on clusters as

discrete entities whose formation, evolution, and eventual dissolution can be viewed in isolation, at most

treating the background galaxy as a source of a passive tidal field. In this paradigm, groups of stars can

be neatly classified into open clusters, globular clusters, associations, and field stars, each with distinct

properties and formation histories. Such isolation is no longer viable. Observations now reveal that the

objects that go on to form bound star clusters are merely the innermost parts of a hierarchy that extends

to the scales of galaxies. Once clusters form, the tidal perturbations to which they are subject are affected

first by the immediate star-forming environment, and over longer times by the full cosmological history of

galaxy assembly. Going to high redshift brings us to a point where the distinction between open clusters

and globular clusters dissolves. Consequently any modern understanding of star clusters must bridge from

sub-pc to cosmological scales. While many questions remain, the outlines of a model are starting to become

clear:

SUMMARY POINTS

1. Stars form in giant molecular clouds (GMCs) over a few free-fall times, at a rate per free-fall time

εff ∼ 1%, with a spread of ∼ 0.5 dex. At formation, the stars are hierarchically-structured and

cannot be separated neatly into clusters. Distinct star clusters emerge only after gas is cleared,

which occurs in less than a few million years. After about 30 Myr in Milky Way-like galaxies, ∼ 10%

of the stars are in clusters. There are good theoretical arguments that this fraction should vary

with galactic environment, but the evidence either for or against variation is thus far unconvincing.

2. The portions of clouds that form bound clusters have at most mildly elevated εff values, but form

stars over multiple free-fall times, allowing them to reach elevated total star formation efficiencies.

Extended star formation renders these regions dynamically relaxed and well-mixed in abundance.

In contrast, the stars that are not part of the bound regions never dynamically relax, and may or

may not be well-mixed. They only gradually drift apart; they are not part of a coherent flow either

collapsing towards or expanding away from the dense regions that become bound.

3. Star formation is ultimately terminated by feedback, but which type of feedback is dominant de-

pends on the local environment. Outflows dominate in clouds too small to contain massive stars,
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and radiation pressure dominates in the most massive and dense systems, but for the bulk of star

clusters photoionization is likely to be most important. Feedback sets the timescale for gas clear-

ing, and thus determines the density at which star formation transitions from taking place over

one to many dynamical times, marking the boundary between the bound and unbound parts of

a hierarchical star-forming cloud. The initial cluster mass function (ICMF) of both bound and

unbound clusters is well described by a power-law dN/dM ∝ MαM with αM ≈ −2, likely with

an environmentally-dependent high-mass cutoff. Evidence for any stronger variation in cluster

formation with environment is weak.

4. In the first ≈ 10−100 Myr after a gas-free cluster population emerges, it is subject to mass loss via

stellar evolution-driven expansion and tidal shocking by gas in its immediate environment. The rate

at which the cluster age function (CAF) declines from ≈ 10−100 Myr, as parameterized by its slope

αT (dN/dT ∝ TαT ), provides a powerful constraint on the importance of these processes. In the

Solar neighborhood αT ≈ −0.5, implying moderately strong cluster destruction, but the CAF slope

outside the Milky Way is uncertain because present samples are compromised by uncertainties in

cluster selection and age assignment. The strength of early mass loss mechanisms depends strongly

on the distributions of cluster concentration and ratio of size to tidal radius at the end of gas clearing,

which are poorly constrained both theoretically and observationally, though there are observational

hints that clusters in Milky Way-like galaxies are born fairly concentrated and under-filling their

tidal radii. There is tension between these hints and the Milky Way cluster age distribution, which

requires moderately strong early cluster disruption.

5. Over timescales of Gyr, the dominant cluster destruction mechanisms are relaxation and tidal shock-

ing (by GMCs for disk clusters, by disk traversal for halo clusters). Relaxation preferentially destroy

low-mass clusters; tidal shocking likely does as well, though this depends on how strongly density

increases with mass. These mechanisms thus provide a plausible mechanism for transforming the

power-law mass distribution ubiquitously observed for young clusters into the peaked distribution

observed for globular clusters. However, enhanced tidal shocking during clusters’ first ≈ 100 Myr

of life also preferentially destroys low-mass clusters, and potentially provides an alternate expla-

nation. The relative importance of the various processes, and the timescale over which the CMF

shape changes, likely depends on the galactic environment.

6. Even after clusters come apart in physical space, the stars remain coherent in kinematic, action-

angle, and chemical space for timescales of tens, hundreds, and thousands of Myr, respectively. In

principle it should be possible to reconstruct clusters in these spaces. However, efforts to do so are

still in their infancy, and most present techniques still suffer from high rates of false positives.

FUTURE ISSUES

1. A recurring theme of this review is the uncertainty in inferences of various quantities – cutoffs in

the CMF, cluster ages, etc. – based on integrated light. When one cross-checks these results against

more accurate methods based on resolved stellar populations and young stellar objects (YSOs), the

level of agreement is often worse than a naive interpretation of the stated error bars would suggest.

However, integrated light observations will remain a vital tool for the foreseeable future, since even

in the era of JWST we will not be able to resolve stellar populations in clusters at even ∼ 100 Mpc

distances, let alone at high redshift. Consequently, there is an urgent need for a program of checking

integrated light techniques against resolved stellar populations, and developing new methods that
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return realistic error bars.

2. There is a pressing need to extend extragalactic cluster catalogs to lower mass and larger age. At

present the Milky Way and extragalactic samples are almost completely non-overlapping in mass,

and the extragalactic samples have very limited dynamic range in mass, making it hard to draw

conclusions. The best prospects for improving this situation are in pushing to lower mass clusters in

galaxies at distances of a few Mpc. This will become possible with extreme AO-fed instrumentation

on the next generation of extremely large telescopes. The same instruments will also make it

possible to probe star formation in cosmologically denser regimes compared to the low overdensities

in the Local Volume.

3. Both analytic models and simulations of star cluster formation that begin from isolated clouds,

ignoring the galactic context, are likely reaching the end of their utility. They consistently fail

to reproduce observed star formation histories and stellar kinematic, and are likely incapable of

correctly predicting the cluster formation efficiency overall. The future is in simulations that start

self-consistently from the galactic or cosmological scale, including all relevant physics, and then

zoom in to individual clusters, or that do form and evolve clusters using semi-analytic models

calibrated to zoom simulations.

4. The largest theoretical uncertainties in cluster demographics now lie at the transition between gas-

dominated and gas-free evolution. Pure N -body simulations of the gas-free phase have advanced to

the point where it is now possible to simulate a cluster of 106 stars directly, but a continuing effort

to push these simulations to ever-larger numbers of stars and longer integrations may have hit the

point of diminishing returns because the largest uncertainty is the choice of initial conditions, which

cannot be addressed without modeling the gas.

5. Observations of 6D phase space from ESA Gaia and ESO Gravity may address the issue of the

poorly known initial conditions, since they can simultaneously supply initial conditions to the N -

body modelers and provide a benchmark against which gas simulators can test their work. This

project will, however, require new statistical tools. Statistics like the CMF are problematic for

unrelaxed populations that cannot be uniquely decomposed into clusters, while structure-agnostic

statistics such as two point correlation functions are less informative than statistics like the CMF

when applied to populations of relaxed, discrete clusters. Observed star-forming complexes such

as Orion, however, appear to transition smoothly between smooth and relaxed at high density and

fractal and unrelaxed at low density. We need statistical tools that can characterize this transition

and work across it.

6. The most powerful future methods for reconstructing disrupted clusters are likely to combine ele-

mental abundance and kinematic data. Each method suffers from significant false positives by itself,

but the false positives to which each are subject are quite different, and thus the two methods can

be used to cross-check one another. However, this will require the availability of abundance mea-

surements going to fainter magnitudes than is now possible. Ground-layer, AO-corrected wide-field

spectrographs planned for the next generation of telescopes will allow detailed abundance analysis

on stars to fainter limits (V ≈ 20) than possible today, greatly aiding this effort.
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Körtgen B, Seifried D, Banerjee R, Vázquez-Semadeni E, Zamora-Avilés M. 2016. MNRAS 459:3460–3474 3.3.6

Kos J, Bland-Hawthorn J, Freeman K, Buder S, Traven G, et al. 2018a. MNRAS 473:4612–4633 5.3

Kos J, de Silva G, Buder S, Bland-Hawthorn J, Sharma S, et al. 2018b. MNRAS 480:5242–5259 1.1
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Roškar R, Debattista VP, Quinn TR, Stinson GS, Wadsley J. 2008. ApJ 684:L79–L82 4.3.2

Ryon JE, Adamo A, Bastian N, Smith LJ, Gallagher III JS, et al. 2014. AJ 148:33 5, 6, 8

Ryon JE, Bastian N, Adamo A, Konstantopoulos IS, Gallagher JS, et al. 2015. MNRAS 452:525–539 2, 9, 4.2.1,

4.2.2, 4.4.1

Ryon JE, Gallagher JS, Smith LJ, Adamo A, Calzetti D, et al. 2017. ApJ 841:92 2, 9, 4.2.1, 4.2.2, 4.4.1

Salim DM, Federrath C, Kewley LJ. 2015. ApJ 806:L36 3.2.1

Schmeja S. 2011. Astronomische Nachrichten 332:172 1.2.1

Schmeja S, Gouliermis DA, Klessen RS. 2009. ApJ 694:367–375 2.7

74 Krumholz, McKee, & Bland-Hawthorn



Schneider N, Ossenkopf V, Csengeri T, Klessen RS, Federrath C, et al. 2015. A&A 575:A79 3.1.1, 3.1.2, 3.5.2

Schuller F, Menten KM, Contreras Y, Wyrowski F, Schilke P, et al. 2009. A&A 504:415–427 1.1

Sellwood JA. 2010. MNRAS 409:145–155 5.2

Sellwood JA, Binney JJ. 2002. MNRAS 336:785–796 4.3.2

Shukirgaliyev B, Parmentier G, Berczik P, Just A. 2017. A&A 605:A119 3.5.2

Silich S, Tenorio-Tagle G. 2018. MNRAS 478:5112–5122 3.3.5

Silva-Villa E, Adamo A, Bastian N, Fouesneau M, Zackrisson E. 2014. MNRAS 440:L116–L120 6, 2.3

Silva-Villa E, Larsen SS. 2011. A&A 529:A25 2.1.1

Skinner MA, Ostriker EC. 2015. ApJ 809:187 3.3.4

Smith R, Fellhauer M, Goodwin S, Assmann P. 2011. MNRAS 414:3036–3043 3.5.2

Smith R, Goodwin S, Fellhauer M, Assmann P. 2013. MNRAS 428:1303–1311 3.5.2

Soderblom DR, Hillenbrand LA, Jeffries RD, Mamajek EE, Naylor T. 2014. Ages of Young Stars. In Protostars and

Planets VI 3.4.1

Sokal KR, Johnson KE, Indebetouw R, Massey P. 2016. ApJ 826:194 3.3.6

Sollima A, Mart́ınez-Delgado D, Valls-Gabaud D, Peñarrubia J. 2011. ApJ 726:47 4.2.2
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