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First Light
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Summary. The first dwarf galaxies, which constitute the building blocks of the
collapsed objects we find today in the Universe, had formed hundreds of millions of
years after the big bang. This pedagogical review describes the early growth of their
small-amplitude seed fluctuations from the epoch of inflation through dark matter
decoupling and matter-radiation equality, to the final collapse and fragmentation of
the dark matter on all mass scales above ∼ 10−4M⊙. The condensation of baryons
into halos in the mass range of ∼ 105–1010M⊙ led to the formation of the first stars
and the re-ionization of the cold hydrogen gas, left over from the big bang. The
production of heavy elements by the first stars started the metal enrichment process
that eventually led to the formation of rocky planets and life.

A wide variety of instruments currently under design [including large-aperture
infrared telescopes on the ground or in space (JWST), and low-frequency arrays for
the detection of redshifted 21cm radiation], will establish better understanding of the
first sources of light during an epoch in cosmic history that was largely unexplored so
far. Numerical simulations of reionization are computationally challenging, as they
require radiative transfer across large cosmological volumes as well as sufficently high
resolution to identify the sources of the ionizing radiation. The technological chal-
lenges for observations and the computational challenges for numerical simulations,
will motivate intense work in this field over the coming decade.
Disclaimer: This review was written as an introductory text for a series of lec-
tures at the SAAS-FEE 2006 winter school, and so it includes a limited sample of
references on each subject. It does not intend to provide a comprehensive list of all
up-to-date references on the topics under discussion, but rather to raise the interest
of beginning graduate students in the related literature.

1 Opening Remarks

When I open the daily newspaper as part of my morning routine, I often
see lengthy descriptions of conflicts between people on borders, properties,
or liberties. Today’s news is often forgotten a few days later. But when one
opens ancient texts that have appealed to a broad audience over a longer
period of time, such as the Bible, what does one often find in the opening
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chapter?... a discussion of how the constituents of the Universe (including
light, stars and life) were created. Although humans are often occupied with
mundane problems, they are curious about the big picture. As citizens of the
Universe, we cannot help but wonder how the first sources of light formed,
how life came to existence, and whether we are alone as intelligent beings in
this vast space. As astronomers in the twenty first century, we are uniquely
positioned to answer these big questions with scientific instruments and a
quantitative methodology. In this pedagogical review, intended for students
preparing to specialize in cosmology, I will describe current ideas about one
of these topics: the appearance of the first sources of light and their influence
on the surrounding Universe. This topic is one of the most active frontiers
in present-day cosmology. As such it is an excellent area for a PhD thesis
of a graduate student interested in cosmology. I will therefore highlight the
unsolved questions in this field as much as the bits we understand.

2 Excavating the Universe for Clues About Its History

When we look at our image reflected off a mirror at a distance of 1 meter,
we see the way we looked 6 nano-seconds ago, the light travel time to the
mirror and back. If the mirror is spaced 1019 cm = 3pc away, we will see
the way we looked twenty one years ago. Light propagates at a finite speed,
and so by observing distant regions, we are able to see how the Universe
looked like in the past, a light travel time ago. The statistical homogeneity
of the Universe on large scales guarantees that what we see far away is a fair
statistical representation of the conditions that were present in in our region
of the Universe a long time ago.

This fortunate situation makes cosmology an empirical science. We do not
need to guess how the Universe evolved. Using telescopes we can simply see
the way it appeared at earlier cosmic times. Since a greater distance means a
fainter flux from a source of a fixed luminosity, the observation of the earliest
sources of light requires the development of sensitive instruments and poses
challenges to observers.

We can in principle image the Universe only if it is transparent. Earlier
than 0.4 million years after the big bang, the cosmic plasma was ionized and
the Universe was opaque to Thomson scattering by the dense gas of free
electrons that filled it. Thus, telescopes cannot be used to image the infant
Universe at earlier times (or redshifts > 103). The earliest possible image of
the Universe was recorded by COBE and WMAP (see Fig. 2).
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Fig. 1. Cosmology is like archeology. The deeper one looks, the older is the layer
that one is revealing, owing to the finite propagation speed of light.

Fig. 2. Images of the Universe shortly after it became transparent, taken by
the COBE and WMAP satellites (see http://map.gsfc.nasa.gov/ for details). The
slight density inhomogeneties in the otherwise uniform Universe, imprinted hot
and cold brightness map of the cosmic microwave background. The existence
of these anisotropies was predicted three decades before the technology for tak-
ing this image became available in a number of theoretical papers, including
[355, 308, 297, 338, 282].
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Fig. 3. The optical depth of the Universe to electron scattering (upper panel) and
the ionization fraction (lower panel) as a function of redshift before reionization. Ob-
servatories of electromagnetic radiation cannot image the opaque Universe beyond
a redshift of z ∼ 1100.

3 Bakground Cosmological Model

3.1 The Expanding Universe

The modern physical description of the Universe as a whole can be traced
back to Einstein, who argued theoretically for the so-called “cosmological
principle”: that the distribution of matter and energy must be homogeneous
and isotropic on the largest scales. Today isotropy is well established (see the
review by Wu, Lahav, & Rees 1999 [389]) for the distribution of faint radio
sources, optically-selected galaxies, the X-ray background, and most impor-
tantly the cosmic microwave background (hereafter, CMB; see, e.g., Bennett et
al. 1996 [36]). The constraints on homogeneity are less strict, but a cosmolog-
ical model in which the Universe is isotropic but significantly inhomogeneous
in spherical shells around our special location, is also excluded [155].

In General Relativity, the metric for a space which is spatially homoge-
neous and isotropic is the Friedman-Robertson-Walker metric, which can be
written in the form

ds2 = dt2 − a2(t)

[

dR2

1 − k R2
+ R2

(

dθ2 + sin2 θ dφ2
)

]

, (1)

where a(t) is the cosmic scale factor which describes expansion in time, and
(R, θ, φ) are spherical comoving coordinates. The constant k determines the
geometry of the metric; it is positive in a closed Universe, zero in a flat Uni-
verse, and negative in an open Universe. Observers at rest remain at rest, at



First Light 5

fixed (R, θ, φ), with their physical separation increasing with time in propor-
tion to a(t). A given observer sees a nearby observer at physical distance D
receding at the Hubble velocity H(t)D, where the Hubble constant at time t
is H(t) = d a(t)/dt. Light emitted by a source at time t is observed at t = 0
with a redshift z = 1/a(t)− 1, where we set a(t = 0) ≡ 1 for convenience (but
note that old textbooks may use a different convention).

The Einstein field equations of General Relativity yield the Friedmann
equation (e.g., Weinberg 1972 [376]; Kolb & Turner 1990 [205])

H2(t) =
8πG

3
ρ − k

a2
, (2)

which relates the expansion of the Universe to its matter-energy content. For
each component of the energy density ρ, with an equation of state p = p(ρ),
the density ρ varies with a(t) according to the equation of energy conservation

d(ρR3) = −pd(R3) . (3)

With the critical density

ρC(t) ≡ 3H2(t)

8πG
(4)

defined as the density needed for k = 0, we define the ratio of the total density
to the critical density as

Ω ≡ ρ

ρC
. (5)

With Ωm, ΩΛ, and Ωr denoting the present contributions to Ω from matter
(including cold dark matter as well as a contribution Ωb from baryons), vac-
uum density (cosmological constant), and radiation, respectively, the Fried-
mann equation becomes

H(t)

H0
=

[

Ωm

a3
+ ΩΛ +

Ωr

a4
+

Ωk

a2

]

, (6)

where we define H0 and Ω0 = Ωm + ΩΛ + Ωr to be the present values of H
and Ω, respectively, and we let

Ωk ≡ − k

H2
0

= 1 − Ωm. (7)

In the particularly simple Einstein-de Sitter model (Ωm = 1, ΩΛ = Ωr =
Ωk = 0), the scale factor varies as a(t) ∝ t2/3. Even models with non-zero
ΩΛ or Ωk approach the Einstein-de Sitter behavior at high redshift, i.e. when
(1 + z) ≫ |Ωm

−1 − 1| (as long as Ωr can be neglected). In this high-z regime
the age of the Universe is,

t ≈ 2

3H0

√
Ωm

(1 + z)
−3/2

. (8)
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The Friedmann equation implies that models with Ωk = 0 converge to the
Einstein-de Sitter limit faster than do open models.

In the standard hot Big Bang model, the Universe is initially hot and the
energy density is dominated by radiation. The transition to matter domina-
tion occurs at z ∼ 3500, but the Universe remains hot enough that the gas
is ionized, and electron-photon scattering effectively couples the matter and
radiation. At z ∼ 1100 the temperature drops below ∼ 3000K and protons
and electrons recombine to form neutral hydrogen. The photons then decouple
and travel freely until the present, when they are observed as the CMB [348].

3.2 Composition of the Universe

According to the standard cosmological model, the Universe started at the big
bang about 14 billion years ago. During an early epoch of accelerated superlu-
minal expansion, called inflation, a region of microscopic size was stretched to
a scale much bigger than the visible Universe and our local geometry became
flat. At the same time, primordial density fluctuations were generated out
of quantum mechanical fluctuations of the vacuum. These inhomogeneities
seeded the formation of present-day structure through the process of gravita-
tional instability. The mass density of ordinary (baryonic) matter makes up
only a fifth of the matter that led to the emergence of structure and the rest
is the form of an unknown dark matter component. Recently, the Universe
entered a new phase of accelerated expansion due to the dominance of some
dark vacuum energy density over the ever rarefying matter density.
The basic question that cosmology attempts to answer is:
What are the ingredients (composition and initial conditions) of the
Universe and what processes generated the observed structures in
it?
In detail, we would like to know:
(a) Did inflation occur and when? If so, what drove it and how did it end?
(b) What is the nature of of the dark energy and how does it change over time
and space?
(c) What is the nature of the dark matter and how did it regulate the evolution
of structure in the Universe?

Before hydrogen recombined, the Universe was opaque to electromagnetic
radiation, precluding any possibility for direct imaging of its evolution. The
only way to probe inflation is through the fossil record that it left behind
in the form of density perturbations and gravitational waves. Following in-
flation, the Universe went through several other milestones which left a de-
tectable record. These include: baryogenesis (which resulted in the observed
asymmetry between matter and anti-matter), the electroweak phase transition
(during which the symmetry between electromagnetic and weak interactions
was broken), the QCD phase transition (during which protons and neutrons
were assembled out of quarks and gluons), the dark matter freeze-out epoch
(during which the dark matter decoupled from the cosmic plasma), neutrino
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decoupling, electron-positron annihilation, and light-element nucleosynthesis
(during which helium, deuterium and lithium were synthesized). The signa-
tures that these processes left in the Universe can be used to constrain its
parameters and answer the above questions.

Half a million years after the big bang, hydrogen recombined and the
Universe became transparent. The ultimate goal of observational cosmology
is to image the entire history of the Universe since then. Currently, we have a
snapshot of the Universe at recombination from the CMB, and detailed images
of its evolution starting from an age of a billion years until the present time.
The evolution between a million and a billion years has not been imaged as
of yet.

Within the next decade, NASA plans to launch an infrared space telescope
(JWST) that will image the very first sources of light (stars and black holes)
in the Universe, which are predicted theoretically to have formed in the first
hundreds of millions of years. In parallel, there are several initiatives to con-
struct large-aperture infrared telescopes on the ground with the same goal
in mind1, 2,3. The neutral hydrogen, relic from cosmological recombination,
can be mapped in three-dimensions through its 21cm line even before the first
galaxies formed [226]. Several groups are currently constructing low-frequency
radio arrays in an attempt to map the initial inhomogeneities as well as the
process by which the hydrogen was re-ionized by the first galaxies.

The next generation of ground-based telescopes will have a diameter of
twenty to thirty meter. Together with JWST (that will not be affected by
the atmospheric backgound) they will be able to image the first galaxies.
Given that these galaxies also created the ionized bubbles around them, the
same galaxy locations should correlate with bubbles in the neutral hydrogen
(created by their UV emission). Within a decade it would be possible to
explore the environmental influence of individual galaxies by using the two
sets of instruments in concert [390].

The dark ingredients of the Universe can only be probed indirectly through
a variety of luminous tracers. The distribution and nature of the dark matter
are constrained by detailed X-ray and optical observations of galaxies and
galaxy clusters. The evolution of the dark energy with cosmic time will be
constrained over the coming decade by surveys of Type Ia supernovae, as well
as surveys of X-ray clusters, up to a redshift of two.

On large scales (> 10Mpc) the power-spectrum of primordial density
perturbations is already known from the measured microwave background
anisotropies, galaxy surveys, weak lensing, and the Lyα forest. Future pro-
grams will refine current knowledge, and will search for additional trademarks
of inflation, such as gravitational waves (through CMB polarization), small-

1 http://www.eso.org/projects/owl/
2 http://celt.ucolick.org/
3 http://www.gmto.org/
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Fig. 4. A sketch of the current design for the James Webb Space Tele-
scope, the successor to the Hubble Space Telescope to be launched in 2011
(http://www.jwst.nasa.gov/). The current design includes a primary mirror made
of beryllium which is 6.5 meter in diameter as well as an instrument sensitivity that
spans the full range of infrared wavelengths of 0.6–28µm and will allow detection
of the first galaxies in the infant Universe. The telescope will orbit 1.5 million km
from Earth at the Lagrange L2 point.

Fig. 5. Artist conception of the design for one of the future giant telescopes that
could probe the first generation of galaxies from the ground. The Giant Magellan
Telescope (GMT) will contain seven mirrors (each 8.4 meter in diameter) and will
have the resolving power equivalent to a 24.5 meter (80 foot) primary mirror. For
more details see http://www.gmto.org/
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scale structure (through high-redshift galaxy surveys and 21cm studies), or
the Gaussian statistics of the initial perturbations.

The big bang is the only known event where particles with energies ap-
proaching the Planck scale [(h̄c5/G)1/2 ∼ 1019 GeV] interacted. It therefore
offers prospects for probing the unification physics between quantum me-
chanics and general relativity (to which string theory is the most-popular
candidate). Unfortunately, the exponential expansion of the Universe during
inflation erases memory of earlier cosmic epochs, such as the Planck time.

3.3 Linear Gravitational Growth

Observations of the CMB (e.g., Bennett et al. 1996 [36]) show that the Uni-
verse at recombination was extremely uniform, but with spatial fluctuations
in the energy density and gravitational potential of roughly one part in 105.
Such small fluctuations, generated in the early Universe, grow over time due
to gravitational instability, and eventually lead to the formation of galaxies
and the large-scale structure observed in the present Universe.

As before, we distinguish between fixed and comoving coordinates. Using
vector notation, the fixed coordinate r corresponds to a comoving position x =
r/a. In a homogeneous Universe with density ρ, we describe the cosmological
expansion in terms of an ideal pressureless fluid of particles each of which is
at fixed x, expanding with the Hubble flow v = H(t)r where v = dr/dt. Onto
this uniform expansion we impose small perturbations, given by a relative
density perturbation

δ(x) =
ρ(r)

ρ̄
− 1 , (9)

where the mean fluid density is ρ̄, with a corresponding peculiar velocity
u ≡ v−Hr. Then the fluid is described by the continuity and Euler equations
in comoving coordinates [283, 284]:

∂δ

∂t
+

1

a
∇ · [(1 + δ)u] = 0 (10)

∂u

∂t
+ Hu +

1

a
(u · ∇)u = −1

a
∇φ . (11)

The potential φ is given by the Poisson equation, in terms of the density
perturbation:

∇2φ = 4πGρ̄a2δ . (12)

This fluid description is valid for describing the evolution of collisionless
cold dark matter particles until different particle streams cross. This “shell-
crossing” typically occurs only after perturbations have grown to become non-
linear, and at that point the individual particle trajectories must in general
be followed. Similarly, baryons can be described as a pressureless fluid as long
as their temperature is negligibly small, but non-linear collapse leads to the
formation of shocks in the gas.
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For small perturbations δ ≪ 1, the fluid equations can be linearized and
combined to yield

∂2δ

∂t2
+ 2H

∂δ

∂t
= 4πGρ̄δ . (13)

This linear equation has in general two independent solutions, only one of
which grows with time. Starting with random initial conditions, this “growing
mode” comes to dominate the density evolution. Thus, until it becomes non-
linear, the density perturbation maintains its shape in comoving coordinates
and grows in proportion to a growth factor D(t). The growth factor in the
matter-dominated era is given by [283]

D(t) ∝
(

ΩΛa3 + Ωka + Ωm

)1/2

a3/2

∫ a

0

a′3/2 da′

(ΩΛa′3 + Ωka′ + Ωm)3/2
, (14)

where we neglect Ωr when considering halos forming in the matter-dominated
regime at z ≪ 104. In the Einstein-de Sitter model (or, at high redshift, in
other models as well) the growth factor is simply proportional to a(t).

The spatial form of the initial density fluctuations can be described in
Fourier space, in terms of Fourier components

δk =

∫

d3x δ(x)e−ik·x . (15)

Here we use the comoving wavevector k, whose magnitude k is the comov-
ing wavenumber which is equal to 2π divided by the wavelength. The Fourier
description is particularly simple for fluctuations generated by inflation (e.g.,
Kolb & Turner 1990 [205]). Inflation generates perturbations given by a Gaus-
sian random field, in which different k-modes are statistically independent,
each with a random phase. The statistical properties of the fluctuations are
determined by the variance of the different k-modes, and the variance is de-
scribed in terms of the power spectrum P (k) as follows:

〈δkδ∗
k′〉 = (2π)

3
P (k) δ(3) (k − k′) , (16)

where δ(3) is the three-dimensional Dirac delta function. The gravitational po-
tential fluctuations are sourced by the density fluctuations through Poisson’s
equation.

In standard models, inflation produces a primordial power-law spectrum
P (k) ∝ kn with n ∼ 1. Perturbation growth in the radiation-dominated and
then matter-dominated Universe results in a modified final power spectrum,
characterized by a turnover at a scale of order the horizon cH−1 at matter-
radiation equality, and a small-scale asymptotic shape of P (k) ∝ kn−4. The
overall amplitude of the power spectrum is not specified by current models of
inflation, and it is usually set by comparing to the observed CMB temperature
fluctuations or to local measures of large-scale structure.
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Since density fluctuations may exist on all scales, in order to determine the
formation of objects of a given size or mass it is useful to consider the statistical
distribution of the smoothed density field. Using a window function W (r)
normalized so that

∫

d3r W (r) = 1, the smoothed density perturbation field,
∫

d3rδ(x)W (r), itself follows a Gaussian distribution with zero mean. For the
particular choice of a spherical top-hat, in which W = 1 in a sphere of radius R
and is zero outside, the smoothed perturbation field measures the fluctuations
in the mass in spheres of radius R. The normalization of the present power
spectrum is often specified by the value of σ8 ≡ σ(R = 8h−1Mpc). For the
top-hat, the smoothed perturbation field is denoted δR or δM , where the mass
M is related to the comoving radius R by M = 4πρmR3/3, in terms of the
current mean density of matter ρm. The variance 〈δM 〉2 is

σ2(M) = σ2(R) =

∫ ∞

0

dk

2π2
k2P (k)

[

3j1(kR)

kR

]2

, (17)

where j1(x) = (sin x − x cosx)/x2. The function σ(M) plays a crucial role in
estimates of the abundance of collapsed objects, as we describe later.

Species that decouple from the cosmic plasma (like the dark matter or the
baryons) would show fossil evidence for acoustic oscillations in their power
spectrum of inhomogeneities due to sound waves in the radiation fluid to
which they were coupled at early times. This phenomenon can be understood
as follows. Imagine a localized point-like perturbation from inflation at t = 0.
The small perturbation in density or pressure will send out a sound wave that
will reach the sound horizon cst at any later time t. The perturbation will
therefore correlate with its surroundings up to the sound horizon and all k-
modes with wavelengths equal to this scale or its harmonics will be correlated.
The scales of the perturbations that grow to become the first collapsed objects
at z < 100 cross the horizon in the radiation dominated era after the dark
matter decouples from the cosmic plasma. Next we consider the imprint of
this decoupling on the smallest-scale structure of the dark matter.

3.4 The Smallest-Scale Power Spectrum of Cold Dark Matter

A broad range of observational data involving the dynamics of galaxies, the
growth of large-scale structure, and the dynamics and nucleosynthesis of the
Universe as a whole, indicate the existence of dark matter with a mean cosmic
mass density that is ∼ 5 times larger than the density of the baryonic matter
[189, 348]. The data is consistent with a dark matter composed of weakly-
interacting, massive particles, that decoupled early and adiabatically cooled
to an extremely low temperature by the present time [189]. The Cold Dark
Matter (CDM) has not been observed directly as of yet, although laboratory
searches for particles from the dark halo of our own Milky-Way galaxy have
been able to restrict the allowed parameter space for these particles. Since
an alternative more-radical interpretation of the dark matter phenomenology
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involves a modification of gravity [253], it is of prime importance to find direct
fingerprints of the CDM particles. One such fingerprint involves the small-scale
structure in the Universe [158], on which we focus in this section.

The most popular candidate for the CDM particle is a Weakly Interacting
Massive Particle (WIMP). The lightest supersymmetric particle (LSP) could
be a WIMP (for a review see [189]). The CDM particle mass depends on
free parameters in the particle physics model but typical values cover a range
around M ∼ 100 GeV (up to values close to a TeV). In many cases the LSP
hypothesis will be tested at the Large Hadron Collider (e.g. [33]) or in direct
detection experiments (e.g. [16]).

The properties of the CDM particles affect their response to the small-
scale primordial inhomogeneities produced during cosmic inflation. The par-
ticle cross-section for scattering off standard model fermions sets the epoch
of their thermal and kinematic decoupling from the cosmic plasma (which
is significantly later than the time when their abundance freezes-out at a
temperature T ∼ M). Thermal decoupling is defined as the time when the
temperature of the CDM stops following that of the cosmic plasma while
kinematic decoupling is defined as the time when the bulk motion of the two
species start to differ. For CDM the epochs of thermal and kinetic decou-
pling coincide. They occur when the time it takes for collisions to change the
momentum of the CDM particles equals the Hubble time. The particle mass
determines the thermal spread in the speeds of CDM particles, which tends to
smooth-out fluctuations on very small scales due to the free-streaming of parti-
cles after kinematic decoupling [158, 159]. Viscosity has a similar effect before
the CDM fluid decouples from the cosmic radiation fluid [182]. An important
effect involves the memory the CDM fluid has of the acoustic oscillations of
the cosmic radiation fluid out of which it decoupled. Here we consider the
imprint of these acoustic oscillations on the small-scale power spectrum of
density fluctuations in the Universe. Analogous imprints of acoustic oscilla-
tions of the baryons were identified recently in maps of the CMB [348], and the
distribution of nearby galaxies [119]; these signatures appear on much larger
scales, since the baryons decouple much later when the scale of the horizon is
larger. The discussion in this section follows Loeb & Zaldarriaga (2005) [228].
Formalism

Kinematic decoupling of CDM occurs during the radiation-dominated era.
For example, if the CDM is made of neutralinos with a particle mass of ∼
100 GeV, then kinematic decoupling occurs at a cosmic temperature of Td ∼
10 MeV [182, 87]. As long as Td ≪ 100 MeV, we may ignore the imprint of
the QCD phase transition (which transformed the cosmic quark-gluon soup
into protons and neutrons) on the CDM power spectrum [321]. Over a short
period of time during this transition, the pressure does not depend on density
and the sound speed of the plasma vanishes, resulting in a significant growth
for perturbations with periods shorter than the length of time over which
the sound speed vanishes. The transition occurs when the temperature of
the cosmic plasma is ∼ 100 − 200 MeV and lasts for a small fraction of the
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Hubble time. As a result, the induced modifications are on scales smaller than
those we are considering here and the imprint of the QCD phase transition is
washed-out by the effects we calculate.

At early times the contribution of the dark matter to the energy density
is negligible. Only at relatively late times when the cosmic temperature drops
to values as low as ∼ 1 eV, matter and radiation have comparable energy
densities. As a result, the dynamics of the plasma at earlier times is virtually
unaffected by the presence of the dark matter particles. In this limit, the
dynamics of the radiation determines the gravitational potential and the dark
matter just responds to that potential. We will use this simplification to obtain
analytic estimates for the behavior of the dark matter transfer function.

The primordial inflationary fluctuations lead to acoustic modes in the radi-
ation fluid during this era. The interaction rate of the particles in the plasma is
so high that we can consider the plasma as a perfect fluid down to a comoving
scale,

λf ∼ ηd/
√

N ; N ∼ nσtd, (18)

where ηd =
∫ td

0 dt/a(t) is the conformal time (i.e. the comoving size of the
horizon) at the time of CDM decoupling, td; σ is the scattering cross section
and n is the relevant particle density. (Throughout this section we set the
speed of light and Planck’s constant to unity for brevity.) The damping scale
depends on the species being considered and its contribution to the energy
density, and is the largest for neutrinos which are only coupled through weak
interactions. In that case N ∼ (T/T ν

d )3 where T ν
d ∼ 1 MeV is the temperature

of neutrino decoupling. At the time of CDM decoupling N ∼ M/Td ∼ 104 for
the rest of the plasma, where M is the mass of the CDM particle. Here we
will consider modes of wavelength larger than λf , and so we neglect the effect
of radiation diffusion damping and treat the plasma (without the CDM) as a
perfect fluid.

The equations of motion for a perfect fluid during the radiation era can
be solved analytically. We will use that solution here, following the notation
of Dodelson [109]. As usual we Fourier decompose fluctuations and study
the behavior of each Fourier component separately. For a mode of comoving
wavenumber k in Newtonian gauge, the gravitational potential fluctuations
are given by:

Φ = 3Φp

[

sin(ωη) − ωη cos(ωη)

(ωη)3

]

, (19)

where ω = k/
√

3 is the frequency of a mode and Φp is its primordial ampli-
tude in the limit η → 0. In this section we use conformal time η =

∫

dt/a(t)
with a(t) ∝ t1/2 during the radiation-dominated era. Expanding the temper-
ature anisotropy in multipole moments and using the Boltzmann equation
to describe their evolution, the monopole Θ0 and dipole Θ1 of the photon
distribution can be written in terms of the gravitational potential as [109]:
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Θ0 = Φ

(

x2

6
+

1

2

)

+
x

2
Φ′

Θ1 = −x2

6

(

Φ′ +
1

x
Φ

)

(20)

where x ≡ kη and a prime denotes a derivative with respect to x.
The solutions in equations (19) and (20) assume that both the sound speed

and the number of relativistic degrees of freedom are constant over time. As
a result of the QCD phase transition and of various particles becoming non-
relativistic, both of these assumptions are not strictly correct. The vanishing
sound speed during the QCD phase transition provides the most dramatic
effect, but its imprint is on scales smaller than the ones we consider here
because the transition occurs at a significantly higher temperature and only
lasts for a fraction of the Hubble time [321].

Before the dark matter decouples kinematically, we will treat it as a fluid
which can exchange momentum with the plasma through particle collisions.
At early times, the CDM fluid follows the motion of the plasma and is involved
in its acoustic oscillations. The continuity and momentum equations for the
CDM can be written as:

δ̇c + θc = 3Φ̇

θ̇c +
ȧ

a
θc = k2c2

sδc − k2σc − k2Φ + τ−1
c (Θ1 − θc) (21)

where a dot denotes an η-derivative, δc is the dark matter density perturba-
tion, θc is the divergence of the dark matter velocity field and σc denotes the
anisotropic stress. In writing these equations we have followed Ref. [230]. The
term τ−1

c (Θ1 − θc) encodes the transfer of momentun between the radiation
and CDM fluids and τ−1

c provides the collisional rate of momentum transfer,

τ−1
c = nσ

T

M
a, (22)

with n being the number density of particles with which the dark matter is
interacting, σ(T ) the average cross section for interaction and M the mass of
the dark matter particle. The relevant scattering partners are the standard
model leptons which have thermal abundances. For detailed expressions of
the cross section in the case of supersymmetric (SUSY) dark matter, see Refs.
[87, 159]. For our purpose, it is sufficient to specify the typical size of the cross
section and its scaling with cosmic time,

σ ≈ T 2

M4
σ

, (23)

where the coupling mass Mσ is of the order of the weak-interaction scale
(∼ 100 GeV) for SUSY dark matter. This equation should be taken as the
definition of Mσ, as it encodes all the uncertainties in the details of the par-
ticle physics model into a single parameter. The temperature dependance of
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the averaged cross section is a result of the available phase space. Our re-
sults are quite insensitive to the details other than through the decoupling
time. Equating τ−1

c /a to the Hubble expansion rate gives the temperature of
kinematic decoupling:

Td =

(

M4
σM

Mpl

)1/4

≈ 10 MeV

(

Mσ

100 GeV

)(

M

100 GeV

)1/4

. (24)

The term k2c2
sδc in Eq. (21) results from the pressure gradient force and cs

is the dark matter sound speed. In the tight coupling limit, τc ≪ H−1 we find
that c2

s ≈ fcT/M and that the shear term is k2σc ≈ fvc
2
sτcθc. Here fv and fc

are constant factors of order unity. We will find that both these terms make a
small difference on the scales of interest, so their precise value is unimportant.

By combining both equations in (21) into a single equation for δc we get

δ′′c +
1

x
[1 + Fv(x)] δ′c + c2

s(x)δc

= S(x) −3Fv(x)Φ′ +
x4

d

x5
(3θ′0 − δ′c) , (25)

where xd = kηd and ηd denotes the time of kinematic decoupling which can
be expressed in terms of the decoupling temperature as,

ηd = 2td(1 + zd) ≈
Mpl

T0Td
≈ 10 pc

(

Td

10 MeV

)−1

∝ M−1
σ M−1/4, (26)

with T0 = 2.7K being the present-day CMB temperature and zd being the
redshift at kinematic decoupling. We have also introduced the source function,

S(x) ≡ −3Φ′′ + Φ − 3

x
Φ′. (27)

For x ≪ xd, the dark matter sound speed is given by

c2
s(x) = c2

s(xd)
xd

x
, (28)

where c2
s(xd) is the dark matter sound speed at kinematic decoupling (in units

of the speed of light),

cs(xd) ≈ 10−2f1/2
c

(

Td

10 MeV

)1/2(
M

100 GeV

)−1/2

. (29)

In writing (28) we have assumed that prior to decoupling the temperature of
the dark matter follows that of the plasma. For the viscosity term we have,

Fv(x) = fvc
2
s(xd)x2

d

(xd

x

)5

. (30)
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Free streaming after kinematic decoupling
In the limit of the collision rate being much slower than the Hubble expan-

sion, the CDM is decoupled and the evolution of its perturbations is obtained
by solving a Boltzman equation:

∂f

∂η
+

dri

dη

∂f

∂ri
+

dqi

dη

∂f

∂qi
= 0, (31)

where f(r, q, η) is the distribution function which depends on position, co-
moving momentum q, and time. The comoving momentum 3-components are
dxi/dη = qi/a. We use the Boltzman equation to find the evolution of modes
that are well inside the horizon with x ≫ 1. In the radiation era, the grav-
itational potential decays after horizon crossing (see Eq. 19). In this limit
the comoving momentum remains constant, dqi/dη = 0 and the Boltzman
equation becomes,

∂f

∂η
+

qi

a

∂f

∂ri
= 0. (32)

We consider a single Fourier mode and write f as,

f(r, q, η) = f0(q)[1 + δF (q, η)eik·r], (33)

where f0(q) is the unperturbed distribution,

f0(q) = nCDM

(

M

2πTCDM

)3/2

exp

[

−1

2

Mq2

TCDM

]

(34)

where nCDM and TCDM are the present-day density and temperature of the
dark matter.

Our approach is to solve the Boltzman equation with initial conditions
given by the fluid solution at a time η∗ (which will depend on k). The simplified
Boltzman equation can be easily solved to give δF (q, η) as a function of the
initial conditions δF (q, η∗),

δF (q, η) = δF (q, η∗) exp[−iq · k η∗
a(η∗)

ln(η/η∗)]. (35)

The CDM overdensity δc can then be expressed in terms of the perturba-
tion in the distribution function as,

δc(η) =
1

nCDM

∫

d3q f0(q) δF (q, η). (36)

We can use (35) to obtain the evolution of δc in terms of its value at η∗,

δc(η) = exp

[

−1

2

k2

k2
f

ln2(
η

η∗
)

]

[

δ|η∗
+

dδ

dη
|η∗

η∗ ln(
η

η∗
)

]

, (37)
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where k−2
f =

√

(Td/M)ηd. The exponential term is responsible for the damp-
ing of perturbations as a result of free streaming and the dispersion of the
CDM particles after they decouple from the plasma. The above expression is
only valid during the radiation era. The free streaming scale is simply given
by
∫

dt(v/a) ∝
∫

dta−2 which grows logarithmically during the radiation era
as in equation (37) but stops growing in the matter era when a ∝ t2/3.

Equation (37) can be used to show that even during the free streaming
epoch, δc satisfies equation (25) but with a modified sound speed and viscous
term. For x ≫ xd one should use,

c2
s(x) = c2

s(xd)
(xd

x

)2
[

1 + x2
dc

2
s(xd) ln2(

x

xd
)

]

Fv(x) = 2c2
s(xd)x2

d ln
(xd

x

)

(38)

The differences between the above scalings and those during the tight coupling
regime are a result of the fact that the dark matter temperature stops follow-
ing the plasma temperature but rather scales as a−2 after thermal decoupling,
which coincides with the kinematic decoupling. We ignore the effects of heat
transfer during the fluid stage of the CDM because its temperature is con-
trolled by the much larger heat reservoir of the radiation-dominated plasma
at that stage.

To obtain the transfer function we solve the dark matter fluid equation
until decoupling and then evolve the overdensity using equation (37) up to the
time of matter–radiation equality. In practice, we use the fluid equations up to
x∗ = 10 max(xd, 10) so as to switch into the free streaming solution well after
the gravitational potential has decayed. In the fluid equations, we smoothly
match the sound speed and viscosity terms at x = xd. As mentioned earlier,
because cs(xd) is so small and we are interested in modes that are comparable
to the size of the horizon at decoupling, i.e. xd ∼ few, both the dark matter
sound speed and the associated viscosity play only a minor role, and our
simplified treatment is adequate.

In Figure 6 we illustrate the time evolution of modes during decoupling
for a variety of k values. The situation is clear. Modes that enter the horizon
before kinematic decoupling oscillate with the radiation fluid. This behavior
has two important effects. In the absence of the coupling, modes receive a
“kick” by the source term S(x) as they cross the horizon. After that they
grow logarithmically. In our case, modes that entered the horizon before kine-
matic decoupling follow the plasma oscillations and thus miss out on both the
horizon “kick” and the beginning of the logarithmic growth. Second, the de-
coupling from the radiation fluid is not instantaneous and this acts to further
damp the amplitude of modes with xd ≫ 1. This effect can be understood as
follows. Once the oscillation frequency of the mode becomes high compared
to the scattering rate, the coupling to the plasma effectively damps the mode.
In that limit one can replace the forcing term Θ′

0 by its average value, which
is close to zero. Thus in this regime, the scattering is forcing the amplitude
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Fig. 6. The normalized amplitude of CDM fluctuations δ/ΦP for a variety of modes
with comoving wavenumbers log(kηd) = (0, 1/3, 2/3, 1, 4/3, 5/3, 2) as a function of
x ≡ kη, where η =

∫ t

0
dt/a(t) is the conformal time coordinate. The dashed line

shows the temperature monopole 3θ0 and the uppermost (dotted) curve shows the
evolution of a mode that is uncoupled to the cosmic plasma.

of the dark matter oscillations to zero. After kinematic decoupling the modes
again grow logarithmically but from a very reduced amplitude. The coupling
with the plasma induces both oscillations and damping of modes that entered
the horizon before kinematic decoupling. This damping is different from the
free streaming damping that occurs after kinematic decoupling.

In Figure 7 we show the resulting transfer function of the CDM overden-
sity. The transfer function is defined as the ratio between the CDM density
perturbation amplitude δc when the effect of the coupling to the plasma is
included and the same quantity in a model where the CDM is a perfect fluid
down to arbitrarily small scales (thus, the power spectrum is obtained by
multiplying the standard result by the square of the transfer function). This
function shows both the oscillations and the damping signature mentioned
above. The peaks occur at multipoles of the horizon scale at decoupling,

kpeak = (8, 15.7, 24.7, ..)η−1
d ∝ Mpl

T0Td
. (39)

This same scale determines the “oscillation” damping. The free streaming
damping scale is,

ηdcd(ηd) ln(ηeq/ηd) ∝
MplM

1/2

T0T
3/2
d

ln(Td/Teq), (40)

where Teq is the temperature at matter radiation equality, Teq ≈ 1 eV. The
free streaming scale is parametrically different from the “oscillation” damping
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Fig. 7. Transfer function of the CDM density perturbation amplitude (normalized
by the primordial amplitude from inflation). We show two cases: (i) Td/M = 10−4

and Td/Teq = 107; (ii) Td/M = 10−5 and Td/Teq = 107. In each case the oscillatory
curve is our result and the other curve is the free-streaming only result that was
derived previously in the literature [4,7,8].

scale. However for our fiducial choice of parameters for the CDM particle they
roughly coincide.

The CDM damping scale is significantly smaller than the scales observed
directly in the Cosmic Microwave Background or through large scale structure
surveys. For example, the ratio of the damping scale to the scale that entered
the horizon at Matter-radiation equality is ηd/ηeq ∼ Teq/Td ∼ 10−7 and
to our present horizon ηd/η0 ∼ (TeqT0)

1/2/Td ∼ 10−9. In the context of
inflation, these scales were created 16 and 20 e–folds apart. Given the large
extrapolation, one could certainly imagine that a change in the spectrum could
alter the shape of the power spectrum around the damping scale. However, for
smooth inflaton potentials with small departures from scale invariance this is
not likely to be the case. On scales much smaller than the horizon at matter
radiation equality, the spectrum of perturbations density before the effects of
the damping are included is approximately,

∆2(k) ∝ exp

[

(n − 1) ln(kηeq) +
1

2
α2 ln(kηeq)

2 + · · ·
]

× ln2(kηeq/8) (41)

where the first term encodes the shape of the primordial spectrum and the
second the transfer function. Primordial departures from scale invariance are
encoded in the slope n and its running α. The effective slope at scale k is
then,

∂ ln∆2

∂ ln k
= (n − 1) + α ln(kηeq) +

2

ln(kηeq/8)
. (42)
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For typical values of (n − 1) ∼ 1/60 and α ∼ 1/602 the slope is still positive
at k ∼ η−1

d , so the cut-off in the power will come from the effects we calcu-
late rather than from the shape of the primordial spectrum. However given
the large extrapolation in scale, one should keep in mind the possibility of
significant effects resulting from the mechanisms that generates the density
perturbations.
Implications We have found that acoustic oscillations, a relic from the epoch
when the dark matter coupled to the cosmic radiation fluid, truncate the CDM
power spectrum on a comoving scale larger than effects considered before, such
as free-streaming and viscosity [158, 159, 182]. For SUSY dark matter, the
minimum mass of dark matter clumps that form in the Universe is therefore
increased by more than an order of magnitude to a value of 4

Mcut =
4π

3

(

π

kcut

)3

ΩMρcrit

≃ 10−4

(

Td

10 MeV

)−3

M⊙, (43)

where ρcrit = (H2
0/8πG) = 9×10−30 g cm−3 is the critical density today, and

ΩM is the matter density for the concordance cosmological model [348]. We
define the cut-off wavenumber kcut as the point where the transfer function
first drops to a fraction 1/e of its value at k → 0. This corresponds to kcut ≈
3.3 η−1

d .
Recent numerical simulations [105, 146] of the earliest and smallest objects

to have formed in the Universe (see Fig. 3.4), need to be redone for the modi-
fied power spectrum that we calculated in this section. Although it is difficult
to forecast the effects of the acoustic oscillations through the standard Press-
Schechter formalism [291], it is likely that the results of such simulations will
be qualitatively the same as before except that the smallest clumps would
have a mass larger than before (as given by Eq. 43).

Potentially, there are several observational signatures of the smallest CDM
clumps. As pointed out in the literature [105, 353], the smallest CDM clumps
could produce γ-rays through dark-matter annihilation in their inner density
cusps, with a flux in excess of that from nearby dwarf galaxies. If a sub-
stantial fraction of the Milky Way halo is composed of CDM clumps with
a mass ∼ 10−4M⊙, the nearest clump is expected to be at a distance of
∼ 4 × 1017 cm. Given that the characteristic speed of such clumps is a few
hundred km s−1, the γ-ray flux would therefore show temporal variations on
the relatively long timescale of a thousand years. Passage of clumps through
the solar system should also induce fluctuations in the detection rate of CDM
particles in direct search experiments. Other observational effects have rather

4 Our definition of the cut-off mass follows the convention of the Jeans mass, which
is defined as the mass enclosed within a sphere of radius λJ/2 where λJ ≡ 2π/kJ

is the Jeans wavelength [168].
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Fig. 8. A slice through a numerical simulation of the first dark matter condensations
to form in the Universe. Colors represent the dark matter density at z = 26. The
simulated volume is 60 comoving pc on a side, simulated with 64 million particles
each weighing 1.2 × 10−10M⊙ (!). (from Diemand, Moore, & Stadel 2005 [105]).

limited prospects for detectability. Because of their relatively low-mass and
large size (∼ 1017 cm), the CDM clumps are too diffuse to produce any gravita-
tional lensing signatures (including femto-lensing [161]), even at cosmological
distances.

The smallest CDM clumps should not affect the intergalactic baryons
which have a much larger Jeans mass. However, once objects above ∼ 106M⊙

start to collapse at redshifts z < 30, the baryons would be able to cool inside
of them via molecular hydrogen transitions and the interior baryonic Jeans
mass would drop. The existence of dark matter clumps could then seed the
formation of the first stars inside these objects [66].

3.5 Structure of the Baryons

Early Evolution of Baryonic Perturbations on Large Scales
The baryons are coupled through Thomson scattering to the radiation

fluid until they become neutral and decouple. After cosmic recombination,
they start to fall into the potential wells of the dark matter and their early
evolution was derived by Barkana & Loeb (2005) [29].

On large scales, the dark matter (dm) and the baryons (b) are affected only
by their combined gravity and gas pressure can be ignored. The evolution of
sub-horizon linear perturbations is described in the matter-dominated regime
by two coupled second-order differential equations [284]:

δ̈dm + 2Hδ̇dm = 4πGρ̄m (fbδb + fdmδdm) ,

δ̈b + 2Hδ̇b = 4πGρ̄m (fbδb + fdmδdm) , (44)
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where δdm(t) and δb(t) are the perturbations in the dark matter and baryons,
respectively, the derivatives are with respect to cosmic time t, H(t) = ȧ/a is
the Hubble constant with a = (1 + z)−1, and we assume that the mean mass
density ρ̄m(t) is made up of respective mass fractions fdm and fb = 1 − fdm.
Since these linear equations contain no spatial gradients, they can be solved
spatially for δdm(x, t) and δb(x, t) or in Fourier space for δ̃dm(k, t) and δ̃b(k, t).

Defining δtot ≡ fbδb + fdmδdm and δb− ≡ δb − δtot , we find

δ̈tot + 2Hδ̇tot = 4πGρ̄mδtot ,

δ̈b− + 2Hδ̇b− = 0 . (45)

Each of these equations has two independent solutions. The equation for δtot

has the usual growing and decaying solutions, which we denote D1(t) and
D4(t), respectively, while the δb− equation has solutions D2(t) and D3(t); we
number the solutions in order of declining growth rate (or increasing decay
rate). We assume an Einstein-de Sitter, matter-dominated Universe in the red-
shift range z = 20–150, since the radiation contributes less than a few percent
at z < 150, while the cosmological constant and the curvature contribute to
the energy density less than a few percent at z > 3. In this regime a ∝ t2/3 and
the solutions are D1(t) = a/ai and D4(t) = (a/ai)

−3/2 for δtot, and D2(t) = 1
and D3(t) = (a/ai)

−1/2 for δb−, where we have normalized each solution to
unity at the starting scale factor ai, which we set at a redshift zi = 150. The
observable baryon perturbation can then be written as

δ̃b(k, t) = δ̃b− + δ̃tot =

4
∑

m=1

δ̃m(k)Dm(t) , (46)

and similarly for the dark matter perturbation,

δ̃dm =
1

fdm

(

δ̃tot − fbδ̃b

)

=

4
∑

m=1

δ̃m(k)Cm(t) , (47)

where Ci = Di for i = 1, 4 and Ci = −(fb/fdm)Di for i = 2, 3. We may
establish the values of δ̃m(k) by inverting the 4× 4 matrix A that relates the
4-vector (δ̃1, δ̃2, δ̃3, δ̃4) to the 4-vector that represents the initial conditions

(δ̃b, δ̃dm, ˙̃δb, ˙̃δdm) at the initial time.
Next we describe the fluctuations in the sound speed of the cosmic gas

caused by Compton heating of the gas, which is due to scattering of the
residual electrons with the CMB photons. The evolution of the temperature
T of a gas element of density ρb is given by the first law of thermodynamics:

dQ =
3

2
kdT − kTd log ρb , (48)

where dQ is the heating rate per particle. Before the first galaxies formed,
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Fig. 9. Redshift evolution of the amplitudes of the independent modes of the den-
sity perturbations (upper panel) and the temperature perturbations (lower panel),
starting at redshift 150 (from Barkana & Loeb 2005 [29]). We show m = 1 (solid
curves), m = 2 (short-dashed curves), m = 3 (long-dashed curves), m = 4 (dotted
curves), and m = 0 (dot-dashed curve). Note that the lower panel shows one plus
the mode amplitude.

dQ

dt
= 4

σT c

me
k(Tγ − T )ργxe(t) , (49)

where σT is the Thomson cross-section, xe(t) is the electron fraction out of
the total number density of gas particles, and ργ is the CMB energy density
at a temperature Tγ . In the redshift range of interest, we assume that the
photon temperature (Tγ = T 0

γ /a) is spatially uniform, since the high sound

speed of the photons (i.e., c/
√

3) suppresses fluctuations on the sub-horizon
scales that we consider, and the horizon-scale ∼ 10−5 fluctuations imprinted
at cosmic recombination are also negligible compared to the smallWe estab-
lish the values of δ̃m(k) by inverting the 4 × 4 matrix A that relates the
4-vector (δ̃1, δ̃2, δ̃3, δ̃4) to the 4-vector that represents the initial conditions

(δ̃b, δ̃dm,
˙̃
δb,

˙̃
δdm) at the initial time. er-scale fluctuations in the gas density

and temperature. Fluctuations in the residual electron fraction xe(t) are even
smaller. Thus,

dT

dt
=

2

3
T

d log ρb

dt
+

xe(t)

tγ
(Tγ − T ) a−4 , (50)
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Fig. 10. Power spectra and initial perturbation amplitudes versus wavenumber
(from [29]). The upper panel shows δ̃b (solid curves) and δ̃dm (dashed curves) at
z = 150 and 20 (from bottom to top). The lower panel shows the initial (z = 150)
amplitudes of δ̃1 (solid curve), δ̃2 (short-dashed curve), δ̃3 (long-dashed curve), δ̃4

(dotted curve), and δ̃T (ti) (dot-dashed curve). Note that if δ̃1 is positive then so are
δ̃3 and δ̃T (ti), while δ̃2 is negative at all k, and δ̃4 is negative at the lowest k but is
positive at k > 0.017 Mpc−1.

where t−1
γ ≡ ρ̄0

γ(8σT c/3me) = 8.55× 10−13yr−1. After cosmic recombination,
xe(t) changes due to the slow recombination rate of the residual ions:

dxe(t)

dt
= −αB(T )x2

e(t)n̄H(1 + y) , (51)

where αB(T ) is the case-B recombination coefficient of hydrogen, n̄H is the
mean number density of hydrogen at time t, and y = 0.079 is the helium to
hydrogen number density ratio. This yields the evolution of the mean tem-
perature, dT̄ /dt = −2HT̄ +xe(t)t

−1
γ (Tγ − T̄ ) a−4. In prior analyses [284, 230]

a spatially uniform speed of sound was assumed for the gas at each redshift.
Note that we refer to δp/δρ as the square of the sound speed of the fluid,
where δp is the pressure perturbation, although we are analyzing perturba-
tions driven by gravity rather than sound waves driven by pressure gradients.

Instead of assuming a uniform sound speed, we find the first-order pertur-
bation equation,

dδT

dt
=

2

3

dδb

dt
− xe(t)

tγ

Tγ

T̄
a−4δT , (52)
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where we defined the fractional temperature perturbation δT . Like the density
perturbation equations, this equation can be solved separately at each x or
at each k. Furthermore, the solution δT (t) is a linear functional of δb(t) [for a
fixed function xe(t)]. Thus, if we choose an initial time ti then using Eq. (46)
we can write the solution in Fourier space as

δ̃T (k, t) =

4
∑

m=1

δ̃m(k)DT
m(t) + δ̃T (k, ti)DT

0 (t) , (53)

where DT
m(t) is the solution of Eq. (52) with δT = 0 at ti and with the

perturbation mode Dm(t) substituted for δb(t), while DT
0 (t) is the solution

with no perturbation δb(t) and with δT = 1 at ti. By modifying the CMBFAST
code (http://www.cmbfast.org/), we can numerically solve Eq. (52) along with
the density perturbation equations for each k down to zi = 150, and then
match the solution to the form of Eq. (53).

Fig. 11. Relative sensitivity of perturbation amplitudes at z = 150 to cos-
mological parameters (from [29]). For variations in a parameter x, we show
dlog

√

P (k)/dlog(x). We consider variations in Ωdmh2 (upper panel), in Ωbh
2 (mid-

dle panel), and in the Hubble constant h (lower panel). When we vary each param-
eter we fix the other two, and the variations are all carried out in a flat Ωtotal = 1
universe. We show the sensitivity of δ̃1 (solid curves), δ̃2 (short-dashed curves), δ̃3

(long-dashed curves), and δ̃T (ti) (dot-dashed curves).
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Figure 9 shows the time evolution of the various independent modes that
make up the perturbations of density and temperature, starting at the time
ti corresponding to zi = 150. DT

2 (t) is identically zero since D2(t) = 1 is con-
stant, while DT

3 (t) and DT
4 (t) are negative. Figure 10 shows the amplitudes

of the various components of the initial perturbations. We consider comov-
ing wavevectors k in the range 0.01 – 40 Mpc−1, where the lower limit is set
by considering sub-horizon scales at z = 150 for which photon perturbations
are negligible compared to δdm and δb, and the upper limit is set by requir-
ing baryonic pressure to be negligible compared to gravity. δ̃2 and δ̃3 clearly
show a strong signature of the large-scale baryonic oscillations, left over from
the era of the photon-baryon fluid before recombination, while δ̃1, δ̃4, and δ̃T

carry only a weak sign of the oscillations. For each quantity, the plot shows
[k3P (k)/(2π2)]1/2, where P (k) is the corresponding power spectrum of fluc-
tuations. δ̃4 is already a very small correction at z = 150 and declines quickly
at lower redshift, but the other three modes all contribute significantly to δ̃b,
and the δ̃T (ti) term remains significant in δ̃T (t) even at z < 100. Note that
at z = 150 the temperature perturbation δ̃T has a different shape with re-
spect to k than the baryon perturbation δ̃b, showing that their ratio cannot
be described by a scale-independent speed of sound.

The power spectra of the various perturbation modes and of δ̃T (ti) depend
on the initial power spectrum of density fluctuations from inflation and on the
values of the fundamental cosmological parameters (Ωdm, Ωb, ΩΛ, and h). If
these independent power spectra can be measured through 21cm fluctuations,
this will probe the basic cosmological parameters through multiple combina-
tions, allowing consistency checks that can be used to verify the adiabatic
nature and the expected history of the perturbations. Figure 11 illustrates
the relative sensitivity of

√

P (k) to variations in Ωdmh2, Ωbh
2, and h, for the

quantities δ̃1, δ̃2, δ̃3, and δ̃T (ti). Not shown is δ̃4, which although it is more
sensitive (changing by order unity due to 10% variations in the parameters),
its magnitude always remains much smaller than the other modes, making it
much harder to detect. Note that although the angular scale of the baryon
oscillations constrains also the history of dark energy through the angular
diameter distance, we have focused here on other cosmological parameters,
since the contribution of dark energy relative to matter becomes negligible at
high redshift.
Cosmological Jeans Mass

The Jeans length λJ was originally defined (Jeans 1928 [187]) in Newtonian
gravity as the critical wavelength that separates oscillatory and exponentially-
growing density perturbations in an infinite, uniform, and stationary distri-
bution of gas. On scales ℓ smaller than λJ, the sound crossing time, ℓ/cs is
shorter than the gravitational free-fall time, (Gρ)−1/2, allowing the build-up
of a pressure force that counteracts gravity. On larger scales, the pressure
gradient force is too slow to react to a build-up of the attractive gravita-
tional force. The Jeans mass is defined as the mass within a sphere of radius
λJ/2, MJ = (4π/3)ρ(λJ/2)3. In a perturbation with a mass greater than MJ,
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the self-gravity cannot be supported by the pressure gradient, and so the gas
is unstable to gravitational collapse. The Newtonian derivation of the Jeans
instability suffers from a conceptual inconsistency, as the unperturbed gravi-
tational force of the uniform background must induce bulk motions (compare
to Binney & Tremaine 1987 [43]). However, this inconsistency is remedied
when the analysis is done in an expanding Universe.

The perturbative derivation of the Jeans instability criterion can be car-
ried out in a cosmological setting by considering a sinusoidal perturbation
superposed on a uniformly expanding background. Here, as in the Newtonian
limit, there is a critical wavelength λJ that separates oscillatory and growing
modes. Although the expansion of the background slows down the exponential
growth of the amplitude to a power-law growth, the fundamental concept of
a minimum mass that can collapse at any given time remains the same (see,
e.g. Kolb & Turner 1990 [205]; Peebles 1993 [284]).

We consider a mixture of dark matter and baryons with density parameters
Ω z

dm = ρ̄dm/ρc and Ω z
b = ρ̄b/ρc, where ρ̄dm is the average dark matter density,

ρ̄b is the average baryonic density, ρc is the critical density, and Ω z
dm + Ω z

b =
Ω z

m is given by equation(83). We also assume spatial fluctuations in the gas
and dark matter densities with the form of a single spherical Fourier mode on
a scale much smaller than the horizon,

ρdm(r, t) − ρ̄dm(t)

ρ̄dm(t)
= δdm(t)

sin(kr)

kr
, (54)

ρb(r, t) − ρ̄b(t)

ρ̄b(t)
= δb(t)

sin(kr)

kr
, (55)

where ρ̄dm(t) and ρ̄b(t) are the background densities of the dark matter and
baryons, δdm(t) and δb(t) are the dark matter and baryon overdensity ampli-
tudes, r is the comoving radial coordinate, and k is the comoving perturbation
wavenumber. We adopt an ideal gas equation-of-state for the baryons with a
specific heat ratio γ=5/3. Initially, at time t = ti, the gas temperature is uni-
form Tb(r, ti)=Ti, and the perturbation amplitudes are small δdm,i, δb,i ≪ 1.
We define the region inside the first zero of sin(kr)/(kr), namely 0 < kr < π,
as the collapsing “object”.

The evolution of the temperature of the baryons Tb(r, t) in the lin-
ear regime is determined by the coupling of their free electrons to the
CMB through Compton scattering, and by the adiabatic expansion of the
gas. Hence, Tb(r, t) is generally somewhere between the CMB temperature,
Tγ ∝ (1 + z)−1 and the adiabatically-scaled temperature Tad ∝ (1 + z)−2. In
the limit of tight coupling to Tγ , the gas temperature remains uniform. On
the other hand, in the adiabatic limit, the temperature develops a gradient
according to the relation

Tb ∝ ρ
(γ−1)
b . (56)

The evolution of a cold dark matter overdensity, δdm(t), in the linear regime
is described by the equation (44),
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δ̈dm + 2Hδ̇dm =
3

2
H2 (Ωbδb + Ωdmδdm) (57)

whereas the evolution of the overdensity of the baryons, δb(t), with the inclu-
sion of their pressure force is described by (see §9.3.2 of [205]),

δ̈b+2Hδ̇b =
3

2
H2 (Ωbδb + Ωdmδdm)− kTi

µmp

(

k

a

)2
(ai

a

)(1+β)
(

δb +
2

3
β[δb − δb,i]

)

.

(58)
Here, H(t) = ȧ/a is the Hubble parameter at a cosmological time t, and
µ = 1.22 is the mean molecular weight of the neutral primordial gas in atomic
units. The parameter β distinguishes between the two limits for the evolution
of the gas temperature. In the adiabatic limit β = 1, and when the baryon
temperature is uniform and locked to the background radiation, β = 0. The
last term on the right hand side (in square brackets) takes into account the
extra pressure gradient force in ∇(ρbT ) = (T∇ρb + ρb∇T ), arising from the
temperature gradient which develops in the adiabatic limit. The Jeans wave-
length λJ = 2π/kJ is obtained by setting the right-hand side of equation (58)
to zero, and solving for the critical wavenumber kJ. As can be seen from equa-
tion (58), the critical wavelength λJ (and therefore the mass MJ) is in general
time-dependent. We infer from equation (58) that as time proceeds, pertur-
bations with increasingly smaller initial wavelengths stop oscillating and start
to grow.

To estimate the Jeans wavelength, we equate the right-hand-side of equa-
tion (58) to zero. We further approximate δb ∼ δdm, and consider suffi-
ciently high redshifts at which the Universe is matter dominated and flat,
(1+z) ≫ max[(1−Ωm−ΩΛ)/Ωm, (ΩΛ/Ωm)1/3]. In this regime, Ωb ≪ Ωm ≈ 1,
H ≈ 2/(3t), and a = (1+z)−1 ≈ (3H0

√
Ωm/2)2/3t2/3, where Ωm = Ωdm +Ωb

is the total matter density parameter. Following cosmological recombination
at z ≈ 103, the residual ionization of the cosmic gas keeps its temperature
locked to the CMB temperature (via Compton scattering) down to a redshift
of [284]

1 + zt ≈ 160(Ωbh
2/0.022)2/5 . (59)

In the redshift range between recombination and zt, β = 0 and

kJ ≡ (2π/λJ) = [2kTγ(0)/3µmp]
−1/2

√

ΩmH0 , (60)

so that the Jeans mass is therefore redshift independent and obtains the value
(for the total mass of baryons and dark matter)

MJ ≡ 4π

3

(

λJ

2

)3

ρ̄(0) = 1.35 × 105

(

Ωmh2

0.15

)−1/2

M⊙ . (61)

Based on the similarity of MJ to the mass of a globular cluster, Peebles &
Dicke (1968) [281] suggested that globular clusters form as the first generation
of baryonic objects shortly after cosmological recombination. Peebles & Dicke
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assumed a baryonic Universe, with a nonlinear fluctuation amplitude on small
scales at z ∼ 103, a model which has by now been ruled out. The lack of a
dominant mass of dark matter inside globular clusters makes it unlikely that
they formed through direct cosmological collapse, and more likely that they
resulted from fragmentation during the process of galaxy formation.

Fig. 12. Thermal history of the baryons, left over from the big bang, before the first
galaxies formed. The residual fraction of free electrons couple the gas temperture
Tgas to the cosmic microwave background temperature [Tγ ∝ (1+z)] until a redshift
z ∼ 200. Subsequently the gas temperature cools adiabatically at a faster rate
[Tgas ∝ (1 + z)2]. Also shown is the spin temperature of the 21cm transition of
hydrogen Ts which interpolates between the gas and radiation temperature and will
be discussed in detail later in this review.

At z < zt, the gas temperature declines adiabatically as [(1 + z)/(1 + zt)]
2

(i.e., β = 1) and the total Jeans mass obtains the value,

MJ = 4.54 × 103

(

Ωmh2

0.15

)−1/2(
Ωbh

2

0.022

)−3/5(
1 + z

10

)3/2

M⊙. (62)

It is not clear how the value of the Jeans mass derived above relates to the
mass of collapsed, bound objects. The above analysis is perturbative (Eqs. 57
and 58 are valid only as long as δb and δdm are much smaller than unity), and
thus can only describe the initial phase of the collapse. As δb and δdm grow and
become larger than unity, the density profiles start to evolve and dark matter
shells may cross baryonic shells [167] due to their different dynamics. Hence
the amount of mass enclosed within a given baryonic shell may increase with
time, until eventually the dark matter pulls the baryons with it and causes
their collapse even for objects below the Jeans mass.

Even within linear theory, the Jeans mass is related only to the evolution
of perturbations at a given time. When the Jeans mass itself varies with time,
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the overall suppression of the growth of perturbations depends on a time-
weighted Jeans mass. Gnedin & Hui (1998) [150] showed that the correct
time-weighted mass is the filtering mass MF = (4π/3) ρ̄ (2πa/kF )3, in terms
of the comoving wavenumber kF associated with the “filtering scale” (note the
change in convention from π/kJ to 2π/kF ). The wavenumber kF is related to
the Jeans wavenumber kJ by

1

k2
F (t)

=
1

D(t)

∫ t

0

dt′ a2(t′)
D̈(t′) + 2H(t′)Ḋ(t′)

k2
J (t′)

∫ t

t′

dt′′

a2(t′′)
, (63)

where D(t) is the linear growth factor. At high redshift (where Ω z
m → 1), this

relation simplifies to [153]

1

k2
F (t)

=
3

a

∫ a

0

da′

k2
J (a′)

(

1 −
√

a′

a

)

. (64)

Then the relationship between the linear overdensity of the dark matter δdm

and the linear overdensity of the baryons δb, in the limit of small k, can be
written as [150]

δb

δdm
= 1 − k2

k2
F

+ O(k4) . (65)

Linear theory specifies whether an initial perturbation, characterized by
the parameters k, δdm,i, δb,i and ti, begins to grow. To determine the mini-
mum mass of nonlinear baryonic objects resulting from the shell-crossing and
virialization of the dark matter, we must use a different model which exam-
ines the response of the gas to the gravitational potential of a virialized dark
matter halo.

3.6 Formation of Nonlinear Objects

3.7 Spherical Collapse

Let us consider a spherically symmetric density or velocity perturbation of the
smooth cosmological background, and examine the dynamics of a test particle
at a radius r relative to the center of symmetry. Birkhoff’s (1923) [44] the-
orem implies that we may ignore the mass outside this radius in computing
the motion of our particle. We further find that the relativistic equations of
motion describing the system reduce to the usual Friedmann equation for the
evolution of the scale factor of a homogeneous Universe, but with a density
parameter Ω that now takes account of the additional mass or peculiar veloc-
ity. In particular, despite the arbitrary density and velocity profiles given to
the perturbation, only the total mass interior to the particle’s radius and the
peculiar velocity at the particle’s radius contribute to the effective value of Ω.
We thus find a solution to the particle’s motion which describes its departure
from the background Hubble flow and its subsequent collapse or expansion.
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This solution holds until our particle crosses paths with one from a different
radius, which happens rather late for most initial profiles.

As with the Friedmann equation for a smooth Universe, it is possible to
reinterpret the problem into a Newtonian form. Here we work in an inertial
(i.e. non-comoving) coordinate system and consider the force on the particle as
that resulting from a point mass at the origin (ignoring the possible presence
of a vacuum energy density):

d2r

dt2
= −GM

r2
, (66)

where G is Newton’s constant, r is the distance of the particle from the center
of the spherical perturbation, and M is the total mass within that radius. As
long as the radial shells do not cross each other, the mass M is constant in
time. The initial density profile determines M , while the initial velocity profile
determines dr/dt at the initial time. As is well-known, there are three branches
of solutions: one in which the particle turns around and collapses, another in
which it reaches an infinite radius with some asymptotically positive velocity,
and a third intermediate case in which it reachs an infinite radius but with a
velocity that approaches zero. These cases may be written as [164]:

r = A(cos η − 1)
t = B(η − sin η)

}

Closed (0 ≤ η ≤ 2π) (67)

r = Aη2/2
t = Bη3/6

}

Flat (0 ≤ η ≤ ∞) (68)

r = A(cosh η − 1)
t = B(sinh η − η)

}

Open (0 ≤ η ≤ ∞) (69)

where A3 = GMB2 applies in all cases. All three solutions have r3 = 9GMt2/2
as t goes to zero, which matches the linear theory expectation that the per-
turbation amplitude get smaller as one goes back in time. In the closed case,
the shell turns around at time πB and radius 2A and collapses to zero radius
at time 2πB.

We are now faced with the problem of relating the spherical collapse pa-
rameters A, B, and M to the linear theory density perturbation δ [283]. We do
this by returning to the equation of motion. Consider that at an early epoch
(i.e. scale factor ai ≪ 1), we are given a spherical patch of uniform overden-
sity δi (the so-called ‘top-hat’ perturbation). If Ω is essentially unity at this
time and if the perturbation is pure growing mode, then the initial velocity is
radially inward with magnitude δiH(ti)r/3, where H(ti) is the Hubble con-
stant at the initial time and r is the radius from the center of the sphere. This
can be easily seen from the continuity equation in spherical coordinates. The
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equation of motion (in noncomoving coordinates) for a particle beginning at
radius ri is simply

d2r

dt2
= −GM

r2
+

Λr

3
, (70)

where M = (4π/3)r3
i ρi(1+δi) and ρi is the background density of the Universe

at time ti. We next define the dimensionless radius x = rai/ri and rewrite
equation (70) as

l

H2
0

d2x

dt2
= −Ωm

2x2
(1 + δi) + ΩΛx. (71)

Our initial conditions for the integration of this orbit are

x(ti) = ai (72)

dx

dt
(ti) = H(t1)x

(

1 − δi

3

)

= H0ai

(

1 − δi

3

)

√

Ωm

a3
i

+
Ωk

a2
i

+ ΩΛ, (73)

where H(t1) = H0[Ωm/a3(t1) + (1 − Ωm)]1/2 is the Hubble parameter for a
flat Universe at a a cosmic time t1. Integrating equation (71) yields

1

H2
0

(

dx

dt

)2

=
Ωm

x
(1 + δi) + ΩΛx2 + K, (74)

where K is a constant of integration. Evaluating this at the initial time and
dropping terms of O(ai) (but δi ∼ ai, so we keep ratios of order unity), we
find

K = − 5δi

3ai
Ωm + Ωk. (75)

If K is sufficiently negative, the particle will turn-around and the sphere will
collapse at a time

H0tcoll = 2

∫ amax

0

da
(

Ωm/a + K + ΩΛa2
)−1/2

, (76)

where amax is the value of a which sets the denominator of the integral to
zero.

For the case of Λ = 0, we can determine the spherical collapse parameters
A and B. K > 0 (K < 0) produces an open (closed) model. Comparing
coefficients in the energy equations [eq. (74) and the integration of (66)], one
finds

A =
Ωmri

2ai

∣

∣

∣

∣

5δi

3ai
Ωm − Ωk

∣

∣

∣

∣

−1

(77)

B =
Ωm

2H0

∣

∣

∣

∣

5δi

3ai
Ωm − Ωk

∣

∣

∣

∣

−3/2

, (78)

where Ωk = 1 − Ωm. In particular, in an Ω = 1 Universe, where 1 + z =
(3H0t/2)−2/3, we find that a shell collapses at redshift 1 + zc = 0.5929δi/ai,
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or in other words a shell collapsing at redshift zc had a linear overdensity
extrapolated to the present day of δ0 = 1.686(1 + zc).

While this derivation has been for spheres of constant density, we may
treat a general spherical density profile δi(r) up until shell crossing [164]. A
particular radial shell evolves according to the mass interior to it; therefore,
we define the average overdensity δi

δi(R) =
3

4πR3

∫ R

0

d3rδi(r), (79)

so that we may use δi in place of δi in the above formulae. If δi is not monoton-
ically decreasing with R, then the spherical top-hat evolution of two different
radii will predict that they cross each other at some late time; this is known
as shell crossing and signals the breakdown of the solution. Even well-behaved
δi profiles will produce shell crossing if shells are allowed to collapse to r = 0
and then reexpand, since these expanding shells will cross infalling shells. In
such a case, first-time infalling shells will never be affected prior to their turn-
around; the more complicated behavior after turn-around is a manifestation
of virialization. While the end state for general initial conditions cannot be
predicted, various results are known for a self-similar collapse, in which δ(r)
is a power-law [132, 40], as well as for the case of secondary infall models
[156, 165, 181].

3.8 Halo Properties

The small density fluctuations evidenced in the CMB grow over time as de-
scribed in the previous subsection, until the perturbation δ becomes of order
unity, and the full non-linear gravitational problem must be considered. The
dynamical collapse of a dark matter halo can be solved analytically only in
cases of particular symmetry. If we consider a region which is much smaller
than the horizon cH−1, then the formation of a halo can be formulated as
a problem in Newtonian gravity, in some cases with minor corrections com-
ing from General Relativity. The simplest case is that of spherical symmetry,
with an initial (t = ti ≪ t0) top-hat of uniform overdensity δi inside a sphere
of radius R. Although this model is restricted in its direct applicability, the
results of spherical collapse have turned out to be surprisingly useful in un-
derstanding the properties and distribution of halos in models based on cold
dark matter.

The collapse of a spherical top-hat perturbation is described by the New-
tonian equation (with a correction for the cosmological constant)

d2r

dt2
= H2

0ΩΛ r − GM

r2
, (80)

where r is the radius in a fixed (not comoving) coordinate frame, H0 is the
present-day Hubble constant, M is the total mass enclosed within radius r,
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and the initial velocity field is given by the Hubble flow dr/dt = H(t)r. The
enclosed δ grows initially as δL = δiD(t)/D(ti), in accordance with linear
theory, but eventually δ grows above δL. If the mass shell at radius r is bound
(i.e., if its total Newtonian energy is negative) then it reaches a radius of max-
imum expansion and subsequently collapses. As demonstrated in the previous
section, at the moment when the top-hat collapses to a point, the overdensity
predicted by linear theory is δL = 1.686 in the Einstein-de Sitter model, with
only a weak dependence on Ωm and ΩΛ. Thus a tophat collapses at redshift
z if its linear overdensity extrapolated to the present day (also termed the
critical density of collapse) is

δcrit(z) =
1.686

D(z)
, (81)

where we set D(z = 0) = 1.
Even a slight violation of the exact symmetry of the initial perturbation

can prevent the tophat from collapsing to a point. Instead, the halo reaches a
state of virial equilibrium by violent relaxation (phase mixing). Using the virial
theorem U = −2K to relate the potential energy U to the kinetic energy K in
the final state (implying that the virial radius is half the turnaround radius -
where the kinetic energy vanishes), the final overdensity relative to the critical
density at the collapse redshift is ∆c = 18π2 ≃ 178 in the Einstein-de Sitter
model, modified in a Universe with Ωm+ΩΛ = 1 to the fitting formula (Bryan
& Norman 1998 [71])

∆c = 18π2 + 82d− 39d2 , (82)

where d ≡ Ω z
m − 1 is evaluated at the collapse redshift, so that

Ω z
m =

Ωm(1 + z)3

Ωm(1 + z)3 + ΩΛ + Ωk(1 + z)2
. (83)

A halo of mass M collapsing at redshift z thus has a virial radius

rvir = 0.784

(

M

108 h−1 M⊙

)1/3 [
Ωm

Ω z
m

∆c

18π2

]−1/3(
1 + z

10

)−1

h−1 kpc , (84)

and a corresponding circular velocity,

Vc =

(

GM

rvir

)1/2

= 23.4

(

M

108 h−1 M⊙

)1/3 [
Ωm

Ω z
m

∆c

18π2

]1/6(
1 + z

10

)1/2

km s−1 .

(85)
In these expressions we have assumed a present Hubble constant written in
the form H0 = 100 h km s−1Mpc−1. We may also define a virial temperature

Tvir =
µmpV

2
c

2k
= 1.98×104

( µ

0.6

)

(

M

108 h−1 M⊙

)2/3 [
Ωm

Ω z
m

∆c

18π2

]1/3(
1 + z

10

)

K ,

(86)
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where µ is the mean molecular weight and mp is the proton mass. Note that
the value of µ depends on the ionization fraction of the gas; for a fully ionized
primordial gas µ = 0.59, while a gas with ionized hydrogen but only singly-
ionized helium has µ = 0.61. The binding energy of the halo is approximately5

Eb =
1

2

GM2

rvir
= 5.45×1053

(

M

108 h−1 M⊙

)5/3 [
Ωm

Ω z
m

∆c

18π2

]1/3 (
1 + z

10

)

h−1 erg .

(87)
Note that the binding energy of the baryons is smaller by a factor equal to
the baryon fraction Ωb/Ωm.

Although spherical collapse captures some of the physics governing the
formation of halos, structure formation in cold dark matter models procedes
hierarchically. At early times, most of the dark matter is in low-mass halos,
and these halos continuously accrete and merge to form high-mass halos. Nu-
merical simulations of hierarchical halo formation indicate a roughly universal
spherically-averaged density profile for the resulting halos (Navarro, Frenk, &
White 1997, hereafter NFW [266]), though with considerable scatter among
different halos (e.g., [72]). The NFW profile has the form

ρ(r) =
3H2

0

8πG
(1 + z)3

Ωm

Ω z
m

δc

cNx(1 + cNx)2
, (88)

where x = r/rvir, and the characteristic density δc is related to the concen-
tration parameter cN by

δc =
∆c

3

c3
N

ln(1 + cN) − cN/(1 + cN)
. (89)

The concentration parameter itself depends on the halo mass M , at a given
redshift z [377].

More recent N-body simulations indicate deviations from the original NFW
profile; for details and refined fitting formula see [268].

4 Nonlinear Growth

4.1 The Abundance of Dark Matter Halos

In addition to characterizing the properties of individual halos, a critical pre-
diction of any theory of structure formation is the abundance of halos, i.e. the
number density of halos as a function of mass, at any redshift. This prediction
is an important step toward inferring the abundances of galaxies and galaxy
clusters. While the number density of halos can be measured for particular

5 The coefficient of 1/2 in equation (87) would be exact for a singular isothermal
sphere, ρ(r) ∝ 1/r2.
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cosmologies in numerical simulations, an analytic model helps us gain physical
understanding and can be used to explore the dependence of abundances on
all the cosmological parameters.

A simple analytic model which successfully matches most of the numerical
simulations was developed by Press & Schechter (1974) [291]. The model is
based on the ideas of a Gaussian random field of density perturbations, linear
gravitational growth, and spherical collapse. To determine the abundance of
halos at a redshift z, we use δM , the density field smoothed on a mass scale
M , as defined in §3.3. Since δM is distributed as a Gaussian variable with
zero mean and standard deviation σ(M) [which depends only on the present
linear power spectrum, see equation (17)], the probability that δM is greater
than some δ equals

∫ ∞

δ

dδM
1√

2π σ(M)
exp

[

− δ2
M

2 σ2(M)

]

=
1

2
erfc

(

δ√
2σ(M)

)

. (90)

The fundamental ansatz is to identify this probability with the fraction of dark
matter particles which are part of collapsed halos of mass greater than M , at
redshift z. There are two additional ingredients: First, the value used for δ is
δcrit(z) given in equation (81), which is the critical density of collapse found
for a spherical top-hat (extrapolated to the present since σ(M) is calculated
using the present power spectrum); and second, the fraction of dark matter
in halos above M is multiplied by an additional factor of 2 in order to ensure
that every particle ends up as part of some halo with M > 0. Thus, the final
formula for the mass fraction in halos above M at redshift z is

F (> M |z) = erfc

(

δcrit(z)√
2 σ(M)

)

. (91)

This ad-hoc factor of 2 is necessary, since otherwise only positive fluctu-
ations of δM would be included. Bond et al. (1991) [52] found an alternate
derivation of this correction factor, using a different ansatz. In their derivation,
the factor of 2 has a more satisfactory origin, namely the so-called “cloud-in-
cloud” problem: For a given mass M , even if δM is smaller than δcrit(z), it
is possible that the corresponding region lies inside a region of some larger
mass ML > M , with δML

> δcrit(z). In this case the original region should
be counted as belonging to a halo of mass ML. Thus, the fraction of parti-
cles which are part of collapsed halos of mass greater than M is larger than
the expression given in equation (90). Bond et al. showed that, under cer-
tain assumptions, the additional contribution results precisely in a factor of 2
correction.

Differentiating the fraction of dark matter in halos above M yields the
mass distribution. Letting dn be the comoving number density of halos of
mass between M and M + dM , we have

dn

dM
=

√

2

π

ρm

M

−d(lnσ)

dM
νc e−ν2

c
/2 , (92)
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Fig. 13. Fraction of baryons that assembled into dark matter halos with a virial
temperature of Tvir > 104K as a function of redshift. These baryons are above the
temperature threshold for gas cooling and fragmentation via atomic transitions.
After reionization the temperature barrier for star formation in galaxies is raised
because the photo-ionized intergalactic medium is already heated to ∼ 104K and it
can condense only into halos with Tvir > 105K.

where νc = δcrit(z)/σ(M) is the number of standard deviations which the
critical collapse overdensity represents on mass scale M . Thus, the abundance
of halos depends on the two functions σ(M) and δcrit(z), each of which depends
on the energy content of the Universe and the values of the other cosmological
parameters. Since recent observations confine the standard set of parameters
to a relatively narrow range, we illustrate the abundance of halos and other
results for a single set of parameters: Ωm = 0.3, ΩΛ = 0.7, Ωb = 0.045,
σ8 = 0.9, a primordial power spectrum index n = 1 and a Hubble constant
h = 0.7.

Figure 14 shows σ(M) and δcrit(z), with the input power spectrum com-
puted from Eisenstein & Hu (1999) [118]. The solid line is σ(M) for the cold
dark matter model with the parameters specified above. The horizontal dot-
ted lines show the value of δcrit(z) at z = 0, 2, 5, 10, 20 and 30, as indicated in
the figure. From the intersection of these horizontal lines with the solid line
we infer, e.g., that at z = 5 a 1 − σ fluctuation on a mass scale of 2× 107M⊙

will collapse. On the other hand, at z = 5 collapsing halos require a 2−σ fluc-
tuation on a mass scale of 3 × 1010M⊙, since σ(M) on this mass scale equals
about half of δcrit(z = 5). Since at each redshift a fixed fraction (31.7%) of the
total dark matter mass lies in halos above the 1 − σ mass, Figure 14 shows
that most of the mass is in small halos at high redshift, but it continuously
shifts toward higher characteristic halo masses at lower redshift. Note also
that σ(M) flattens at low masses because of the changing shape of the power
spectrum. Since σ → ∞ as M → 0, in the cold dark matter model all the
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dark matter is tied up in halos at all redshifts, if sufficiently low-mass halos
are considered.

Fig. 14. Mass fluctuations and collapse thresholds in cold dark matter models.
The horizontal dotted lines show the value of the extrapolated collapse overdensity
δcrit(z) at the indicated redshifts. Also shown is the value of σ(M) for the cos-
mological parameters given in the text (solid curve), as well as σ(M) for a power
spectrum with a cutoff below a mass M = 1.7 × 108M⊙ (short-dashed curve), or
M = 1.7 × 1011M⊙ (long-dashed curve). The intersection of the horizontal lines
with the other curves indicate, at each redshift z, the mass scale (for each model)
at which a 1 − σ fluctuation is just collapsing at z (see the discussion in the text).

Also shown in Figure 14 is the effect of cutting off the power spectrum on
small scales. The short-dashed curve corresponds to the case where the power
spectrum is set to zero above a comoving wavenumber k = 10 Mpc−1, which
corresponds to a mass M = 1.7× 108M⊙. The long-dashed curve corresponds
to a more radical cutoff above k = 1 Mpc−1, or below M = 1.7 × 1011M⊙. A
cutoff severely reduces the abundance of low-mass halos, and the finite value
of σ(M = 0) implies that at all redshifts some fraction of the dark matter
does not fall into halos. At high redshifts where δcrit(z) ≫ σ(M = 0), all
halos are rare and only a small fraction of the dark matter lies in halos. In
particular, this can affect the abundance of halos at the time of reionization,
and thus the observed limits on reionization constrain scenarios which include
a small-scale cutoff in the power spectrum [21].

In figures 15 – 18 we show explicitly the properties of collapsing halos
which represent 1−σ, 2−σ, and 3−σ fluctuations (corresponding in all cases
to the curves in order from bottom to top), as a function of redshift. No cutoff
is applied to the power spectrum. Figure 15 shows the halo mass, Figure 16
the virial radius, Figure 17 the virial temperature (with µ in equation (86)
set equal to 0.6, although low temperature halos contain neutral gas) as well
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as circular velocity, and Figure 18 shows the total binding energy of these
halos. In figures 15 and 17, the dotted curves indicate the minimum virial
temperature required for efficient cooling with primordial atomic species only
(upper curve) or with the addition of molecular hydrogen (lower curve). Figure
18 shows the binding energy of dark matter halos. The binding energy of the
baryons is a factor ∼ Ωb/Ωm ∼ 15% smaller, if they follow the dark matter.
Except for this constant factor, the figure shows the minimum amount of
energy that needs to be deposited into the gas in order to unbind it from
the potential well of the dark matter. For example, the hydrodynamic energy
released by a single supernovae, ∼ 1051 erg, is sufficient to unbind the gas in
all 1 − σ halos at z > 5 and in all 2 − σ halos at z > 12.

Fig. 15. Characteristic properties of collapsing halos: Halo mass. The solid curves
show the mass of collapsing halos which correspond to 1−σ, 2−σ, and 3−σ fluctua-
tions (in order from bottom to top). The dotted curves show the mass corresponding
to the minimum temperature required for efficient cooling with primordial atomic
species only (upper curve) or with the addition of molecular hydrogen (lower curve).

At z = 5, the halo masses which correspond to 1 − σ, 2 − σ, and 3 − σ
fluctuations are 1.8× 107M⊙, 3.0× 1010M⊙, and 7.0× 1011M⊙, respectively.
The corresponding virial temperatures are 2.0 × 103 K, 2.8 × 105 K, and
2.3×106 K. The equivalent circular velocities are 7.5 km s−1, 88 km s−1, and
250 km s−1. At z = 10, the 1 − σ, 2 − σ, and 3 − σ fluctuations correspond
to halo masses of 1.3 × 103M⊙, 5.7 × 107M⊙, and 4.8 × 109M⊙, respectively.
The corresponding virial temperatures are 6.2 K, 7.9 × 103 K, and 1.5 ×
105 K. The equivalent circular velocities are 0.41 km s−1, 15 km s−1, and 65
km s−1. Atomic cooling is efficient at Tvir > 104 K, or a circular velocity
Vc > 17 km s−1. This corresponds to a 1.2− σ fluctuation and a halo mass of
2.1×108M⊙ at z = 5, and a 2.1−σ fluctuation and a halo mass of 8.3×107M⊙
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Fig. 16. Characteristic properties of collapsing halos: Halo virial radius. The curves
show the virial radius of collapsing halos which correspond to 1−σ, 2−σ, and 3−σ
fluctuations (in order from bottom to top).

Fig. 17. Characteristic properties of collapsing halos: Halo virial temperature and
circular velocity. The solid curves show the virial temperature (or, equivalently, the
circular velocity) of collapsing halos which correspond to 1 − σ, 2 − σ, and 3 − σ
fluctuations (in order from bottom to top). The dotted curves show the minimum
temperature required for efficient cooling with primordial atomic species only (upper
curve) or with the addition of molecular hydrogen (lower curve).
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Fig. 18. Characteristic properties of collapsing halos: Halo binding energy. The
curves show the total binding energy of collapsing halos which correspond to 1− σ,
2 − σ, and 3 − σ fluctuations (in order from bottom to top).

at z = 10. Molecular hydrogen provides efficient cooling down to Tvir ∼ 300
K, or a circular velocity Vc ∼ 2.9 km s−1. This corresponds to a 0.81 − σ
fluctuation and a halo mass of 1.1×106M⊙ at z = 5, and a 1.4−σ fluctuation
and a halo mass of 4.3 × 105M⊙ at z = 10.

In Figure 19 we show the halo mass function dn/d ln(M) at several different
redshifts: z = 0 (solid curve), z = 5 (dotted curve), z = 10 (short-dashed
curve), z = 20 (long-dashed curve), and z = 30 (dot-dashed curve). Note that
the mass function does not decrease monotonically with redshift at all masses.
At the lowest masses, the abundance of halos is higher at z > 0 than at z = 0.

4.2 The Excursion-Set (Extended Press-Schechter) Formalism

The usual Press-Schechter formalism makes no attempt to deal with the cor-
relations between halos or between different mass scales. In particular, this
means that while it can generate a distribution of halos at two different epochs,
it says nothing about how particular halos in one epoch are related to those
in the second. We therefore would like some method to predict, at least sta-
tistically, the growth of individual halos via accretion and mergers. Even re-
stricting ourselves to spherical collapse, such a model must utilize the full
spherically-averaged density profile around a particular point. The potential
correlations between the mean overdensities at different radii make the sta-
tistical description substantially more difficult.

The excursion set formalism (Bond et al. 1991 [52]) seeks to describe the
statistics of halos by considering the statistical properties of δ(R), the average
overdensity within some spherical window of characteristic radius R, as a
function of R. While the Press-Schechter model depends only on the Gaussian
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Fig. 19. Halo mass function at several redshifts: z = 0 (solid curve), z = 5 (dotted
curve), z = 10 (short-dashed curve), z = 20 (long-dashed curve), and z = 30 (dot-
dashed curve).

distribution of δ for one particular R, the excursion set considers all R. Again
the connection between a value of the linear regime δ and the final state is
made via the spherical collapse solution, so that there is a critical value δc(z)
of δ which is required for collapse at a redshift z.

For most choices of window function, the functions δ(R) are correlated
from one R to another such that it is prohibitively difficult to calculate the
desired statistics directly [although Monte Carlo realizations are possible [52]].
However, for one particular choice of a window function, the correlations be-
tween different R greatly simplify and many interesting quantities may be
calculated [52, 212]. The key is to use a k-space top-hat window function,
namely Wk = 1 for all k less than some critical kc and Wk = 0 for k > kc.
This filter has a spatial form of W (r) ∝ j1(kcr)/kcr, which implies a volume
6π2/k3

c or mass 6π2ρb/k3
c . The characteristic radius of the filter is ∼ k−1

c , as
expected. Note that in real space, this window function converges very slowly,
due only to a sinusoidal oscillation, so the region under study is rather poorly
localized.

The great advantage of the sharp k-space filter is that the difference at
a given point between δ on one mass scale and that on another mass scale
is statistically independent from the value on the larger mass scale. With a
Gaussian random field, each δk is Gaussian distributed independently from
the others. For this filter,

δ(M) =

∫

k<kc(M)

d3k

(2π)3
δk, (93)

meaning that the overdensity on a particular scale is simply the sum of the
random variables δk interior to the chosen kc. Consequently, the difference
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between the δ(M) on two mass scales is just the sum of the δk in the spher-
ical shell between the two kc, which is independent from the sum of the δk

interior to the smaller kc. Meanwhile, the distribution of δ(M) given no prior
information is still a Gaussian of mean zero and variance

σ2(M) =
1

2π2

∫

k<kc(M)

dk k2P (k). (94)

If we now consider δ as a function of scale kc, we see that we begin from
δ = 0 at kc = 0 (M = ∞) and then add independently random pieces as
kc increases. This generates a random walk, albeit one whose stepsize varies
with kc. We then assume that, at redshift z, a given function δ(kc) represents
a collapsed mass M corresponding to the kc where the function first crosses
the critical value δc(z). With this assumption, we may use the properties of
random walks to calculate the evolution of the mass as a function of redshift.

It is now easy to rederive the Press-Schechter mass function, including the
previously unexplained factor of 2 [52, 212, 382]. The fraction of mass elements
included in halos of mass less than M is just the probability that a random
walk remains below δc(z) for all kc less than Kc, the filter cutoff appropriate
to M . This probability must be the complement of the sum of the probabilities
that: (a) δ(Kc) > δc(z); or that (b) δ(Kc) < δc(z) but δ(k′

c) > δc(z) for some
k′

c < Kc. But these two cases in fact have equal probability; any random walk
belonging to class (a) may be reflected around its first upcrossing of δc(z) to
produce a walk of class (b), and vice versa. Since the distribution of δ(Kc) is
simply Gaussian with variance σ2(M), the fraction of random walks falling

into class (a) is simply (1/
√

2πσ2)
∫∞

δc(z) dδ exp{−δ2/2σ2(M)}. Hence, the

fraction of mass elements included in halos of mass less than M at redshift z
is simply

F (< M) = 1 − 2 × 1√
2πσ2

∫ ∞

δc(z)

dδ exp{−δ2/2σ2(M)} (95)

which may be differentiated to yield the Press-Schechter mass function. We
may now go further and consider how halos at one redshift are related to those
at another redshift. If we are given that a halo of mass M2 exists at redshift
z2, then we know that the random function δ(kc) for each mass element within
the halo first crosses δ(z2) at kc2 corresponding to M2. Given this constraint,
we may study the distribution of kc where the function δ(kc) crosses other
thresholds. It is particularly easy to construct the probability distribution for
when trajectories first cross some δc(z1) > δc(z2) (implying z1 > z2); clearly
this occurs at some kc1 > kc2. This problem reduces to the previous one if we
translate the origin of the random walks from (kc, δ) = (0, 0) to (kc2, δc(z2)).
We therefore find the distribution of halo masses M1 that a mass element
finds itself in at redshift z1 given that it is part of a larger halo of mass M2

at a later redshift z2 is [52, 55])
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dP

dM1
(M1, z1|M2, z2) =

√

2

π

δc(z1) − δc(z2)

[σ2(M1) − σ2(M2)]3/2

∣

∣

∣

∣

dσ(M1)

dM1

∣

∣

∣

∣

exp

{

− [δc(z1) − δc(z2)]
2

2[σ2(M1) − σ2(M2)]

}

.

(96)

This may be rewritten as saying that the quantity

ṽ =
δc(z1) − δc(z2)

√

σ2(M1) − σ2(M2)
(97)

is distributed as the positive half of a Gaussian with unit variance; equation
(97) may be inverted to find M1(ṽ).

We seek to interpret the statistics of these random walks as those of merg-
ing and accreting halos. For a single halo, we may imagine that as we look back
in time, the object breaks into ever smaller pieces, similar to the branching of
a tree. Equation (96) is the distribution of the sizes of these branches at some
given earlier time. However, using this description of the ensemble distribution
to generate Monte Carlo realizations of single merger trees has proven to be
difficult. In all cases, one recursively steps back in time, at each step breaking
the final object into two or more pieces. An elaborate scheme (Kauffmann
& White 1993 [195]) picks a large number of progenitors from the ensemble
distribution and then randomly groups them into sets with the correct total
mass. This generates many (hundreds) possible branching schemes of equal
likelihood. A simpler scheme (Lacey & Cole 1993 [212]) assumes that at each
time step, the object breaks into two pieces. One value from the distribution
(96) then determines the mass ratio of the two branchs.

One may also use the distribution of the ensemble to derive some additional
analytic results. A useful example is the distribution of the epoch at which
an object that has mass M2 at redshift z2 has accumulated half of its mass
[212]. The probability that the formation time is earlier than z1 is equal to the
probability that at redshift z1 a progenitor whose mass exceeds M2/2 exists:

P (zf > z1) =

∫ M2

M2/2

M2

M

dP

dM
(M, z1|M2, z2)dM, (98)

where dP/dM is given in equation (96). The factor of M2/M corrects the
counting from mass weighted to number weighted; each halo of mass M2 can
have only one progenitor of mass greater than M2/2. Differentiating equation
(98) with respect to time gives the distribution of formation times. This an-
alytic form is an excellent match to scale-free N-body simulations [213]. On
the other hand, simple Monte Carlo implementations of equation (96) produce
formation redshifts about 40% higher [212]. As there may be correlations be-
tween the various branches, there is no unique Monte Carlo scheme.

Numerical tests of the excursion set formalism are quite encouraging. Its
predictions for merger rates are in very good agreement with those measured
in scale-free N-body simulations for mass scales down to around 10% of the
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nonlinear mass scale (that scale at which σM = 1 ), and distributions of for-
mation times closely match the analytic predictions [213]. The model appears
to be a promising method for tracking the merging of halos, with many ap-
plications to cluster and galaxy formation modeling. In particular, one may
use the formalism as the foundation of semi-analytic galaxy formation models
[196]. The excursion set formalism may also be used to derive the correlations
of halos in the nonlinear regime [258].

4.3 Response of Baryons to Nonlinear Dark Matter Potentials

The dark matter is assumed to be cold and to dominate gravity, and so its
collapse and virialization proceeds unimpeded by pressure effects. In order to
estimate the minimum mass of baryonic objects, we must go beyond linear
perturbation theory and examine the baryonic mass that can accrete into the
final gravitational potential well of the dark matter.

For this purpose, we assume that the dark matter had already virialized
and produced a gravitational potential φ(r) at a redshift zvir (with φ → 0 at
large distances, and φ < 0 inside the object) and calculate the resulting over-
density in the gas distribution, ignoring cooling (an assumption justified by
spherical collapse simulations which indicate that cooling becomes important
only after virialization; see Haiman et al. 1996 [168]).

After the gas settles into the dark matter potential well, it satisfies the
hydrostatic equilibrium equation,

∇pb = −ρb∇φ (99)

where pb and ρb are the pressure and mass density of the gas. At z < 100
the gas temperature is decoupled from the CMB, and its pressure evolves
adiabatically (ignoring atomic or molecular cooling),

pb

p̄b
=

(

ρb

ρ̄b

)5/3

(100)

where a bar denotes the background conditions. We substitute equation (100)
into (99) and get the solution,

ρb

ρ̄b
=

(

1 − 2

5

µmpφ

kT̄

)3/2

(101)

where T̄ = p̄bµmp/(kρ̄b) is the background gas temperature. If we define
Tvir = − 1

3mpφ/k as the virial temperature for a potential depth −φ, then the
overdensity of the baryons at the virialization redshift is

δb =
ρb

ρ̄b
− 1 =

(

1 +
6

5

Tvir

T̄

)3/2

− 1. (102)
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This solution is approximate for two reasons: (i) we assumed that the gas is
stationary throughout the entire region and ignored the transitions to infall
and the Hubble expansion at the interface between the collapsed object and
the background intergalactic medium (henceforth IGM), and (ii) we ignored
entropy production at the virialization shock surrounding the object. Never-
theless, the result should provide a better estimate for the minimum mass of
collapsed baryonic objects than the Jeans mass does, since it incorporates the
nonlinear potential of the dark matter.

We may define the threshold for the collapse of baryons by the criterion
that their mean overdensity, δb, exceeds a value of 100, amounting to > 50%
of the baryons that would assemble in the absence of gas pressure, according
to the spherical top-hat collapse model. Equation (102) then implies that
Tvir > 17.2 T̄ .

As mentioned before, the gas temperature evolves at z < 160 according to
the relation T̄ ≈ 170[(1+ z)/100]2 K. This implies that baryons are overdense
by δb > 100 only inside halos with a virial temperature Tvir > 2.9× 103 [(1 +
z)/100]2 K. Based on the top-hat model, this implies a minimum halo mass
for baryonic objects of

Mmin = 5.0 × 103

(

Ωmh2

0.15

)−1/2(
Ωbh

2

0.022

)−3/5(
1 + z

10

)3/2

M⊙, (103)

where we consider sufficiently high redshifts so that Ω z
m ≈ 1. This minimum

mass is coincidentally almost identical to the naive Jeans mass calculation
of linear theory in equation (62) despite the fact that it incorporates shell
crossing by the dark matter, which is not accounted for by linear theory. Unlike
the Jeans mass, the minimum mass depends on the choice for an overdensity
threshold [taken arbitrarily as δb > 100 in equation (103)]. To estimate the
minimum halo mass which produces any significant accretion we set, e.g.,
δb = 5, and get a mass which is lower than Mmin by a factor of 27.

Of course, once the first stars and quasars form they heat the surrounding
IGM by either outflows or radiation. As a result, the Jeans mass which is rele-
vant for the formation of new objects changes [148, 152]). The most dramatic
change occurs when the IGM is photo-ionized and is consequently heated to
a temperature of ∼ (1–2)× 104 K.

5 Fragmentation of the First Gaseous Objects to Stars

5.1 Star Formation

As mentioned in the preface, the fragmentation of the first gaseous objects is
a well-posed physics problem with well specified initial conditions, for a given
power-spectrum of primordial density fluctuations. This problem is ideally
suited for three-dimensional computer simulations, since it cannot be reliably
addressed in idealized 1D or 2D geometries.



First Light 47

Recently, two groups have attempted detailed 3D simulations of the forma-
tion process of the first stars in a halo of ∼ 106M⊙ by following the dynamics
of both the dark matter and the gas components, including H2 chemistry and
cooling. Bromm, Coppi, & Larson (1999) [57] have used a Smooth Particle
Hydrodynamics (SPH) code to simulate the collapse of a top-hat overden-
sity with a prescribed solid-body rotation (corresponding to a spin parameter
λ = 5%) and additional small perturbations with P (k) ∝ k−3 added to the
top-hat profile. Abel et al. (2002) [5] isolated a high-density filament out of a
larger simulated cosmological volume and followed the evolution of its density
maximum with exceedingly high resolution using an Adaptive Mesh Refine-
ment (AMR) algorithm.

Fig. 20. Cooling rates as a function of temperature for a primordial gas composed
of atomic hydrogen and helium, as well as molecular hydrogen, in the absence of
any external radiation. We assume a hydrogen number density nH = 0.045 cm−3,
corresponding to the mean density of virialized halos at z = 10. The plotted quantity
Λ/n2

H is roughly independent of density (unless nH > 10 cm−3), where Λ is the
volume cooling rate (in erg/sec/cm3). The solid line shows the cooling curve for
an atomic gas, with the characteristic peaks due to collisional excitation of H1
and He2. The dashed line shows the additional contribution of molecular cooling,
assuming a molecular abundance equal to 1% of nH .

The generic results of Bromm et al. (1999 [57]; see also Bromm 2000 [58])
are illustrated in Figure 21. The collapsing region forms a disk which fragments
into many clumps. The clumps have a typical mass ∼ 102–103M⊙. This mass
scale corresponds to the Jeans mass for a temperature of ∼ 500K and the
density ∼ 104 cm−3 where the gas lingers because its cooling time is longer
than its collapse time at that point (see Fig. 22). Each clump accretes mass
slowly until it exceeds the Jeans mass and collapses at a roughly constant
temperature (isothermally) due to H2 cooling that brings the gas to a fixed
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temperature floor. The clump formation efficiency is high in this simulation
due to the synchronized collapse of the overall top-hat perturbation.

Fig. 21. Numerical results from Bromm et al. (1999) [57], showing gas properties
at z = 31.2 for a collapsing slightly inhomogeneous top-hat region with a prescribed
solid-body rotation. (a) Free electron fraction (by number) vs. hydrogen number
density (in cm−3). At densities exceeding n ∼ 103 cm−3, recombination is very
efficient, and the gas becomes almost completely neutral. (b) Molecular hydrogen
fraction vs. number density. After a quick initial rise, the H2 fraction approaches
the asymptotic value of f ∼ 10−3, due to the H− channel. (c) Gas temperature vs.
number density. At densities below ∼ 1 cm−3, the gas temperature rises because of
adiabatic compression until it reaches the virial value of Tvir ≃ 5000 K. At higher
densities, cooling due to H2 drives the temperature down again, until the gas settles
into a quasi-hydrostatic state at T ∼ 500 K and n ∼ 104 cm−3. Upon further
compression due to accretion and the onset of gravitational collapse, the gas shows
a further modest rise in temperature. (d) Jeans mass (in M⊙) vs. number density.
The Jeans mass reaches a value of MJ ∼ 103M⊙ for the quasi-hydrostatic gas in
the center of the potential well, and reaches the resolution limit of the simulation,
Mres ≃ 200M⊙, for densities close to n = 108 cm−3.

Bromm (2000) [58] has simulated the collapse of one of the above-
mentioned clumps with ∼ 1000M⊙ and demonstrated that it does not tend
to fragment into sub-components. Rather, the clump core of ∼ 100M⊙ free-
falls towards the center leaving an extended envelope behind with a roughly
isothermal density profile. At very high gas densities, three-body reactions
become important in the chemistry of H2. Omukai & Nishi (1998) [274] have
included these reactions as well as radiative transfer and followed the collapse
in spherical symmetry up to stellar densities. Radiation pressure from nuclear
burning at the center is unlikely to reverse the infall as the stellar mass builds
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Fig. 22. Gas and clump morphology at z = 28.9 in the simulation of Bromm
et al. (1999) [57]. Top row: The remaining gas in the diffuse phase. Bottom row:
Distribution of clumps. The numbers next to the dots denote clump mass in units of
M⊙. Left panels: Face-on view. Right panels: Edge-on view. The length of the box is
30 pc. The gas has settled into a flattened configuration with two dominant clumps
of mass close to 20, 000M⊙. During the subsequent evolution, the clumps survive
without merging, and grow in mass only slightly by accretion of surrounding gas.

up. These calculations indicate that each clump may end as a single mas-
sive star; however, it is conceivable that angular momentum may eventually
halt the collapsing cloud and lead to the formation of a binary stellar system
instead.

The Jeans mass, which is defined based on small fluctuations in a back-
ground of uniform density, does not strictly apply in the context of collapsing
gas cores. We can instead use a slightly modified critical mass known as the
Bonnor-Ebert mass [53, 114]. For baryons in a background of uniform den-
sity ρb, perturbations are unstable to gravitational collapse in a region more
massive than the Jeans mass. Instead of a uniform background, we consider
a spherical, non-singular, isothermal, self-gravitating gas in hydrostatic equi-
librium, i.e., a centrally-concentrated object which more closely resembles the
gas cores found in the above-mentioned simulations. In this case, small fluc-
tuations are unstable and lead to collapse if the sphere is more massive than
the Bonnor-Ebert mass MBE, given by the same expression the Jeans Mass
but with a different coefficient (1.2 instead of 2.9) and with ρb denoting in
this case the gas (volume) density at the surface of the sphere,

MBE = 1.2
1√
ρb

(

kT

Gµmp

)3/2

. (104)

In their simulation, Abel et al. (2000)[4] adopted the actual cosmological
density perturbations as initial conditions. The simulation focused on the den-
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sity peak of a filament within the IGM, and evolved it to very high densities
(Fig. 23). Following the initial collapse of the filament, a clump core formed
with ∼ 200M⊙, amounting to only ∼ 1% of the virialized mass. Subsequently
due to slow cooling, the clump collapsed subsonically in a state close to hy-
drostatic equilibrium (see Fig. 24). Unlike the idealized top-hat simulation
of Bromm et al. (2001) [59], the collapse of the different clumps within the
filament is not synchronized. Once the first star forms at the center of the
first collapsing clump, it is likely to affect the formation of other stars in its
vicinity.

As soon as nuclear burning sets in the core of the proto-star, the radiation
emitted by the star starts to affect the infall of the surrounding gas towards
it. The radiative feedback involves photo-dissociation of H2, Lyα radiation
pressure, and photo-evaporation of the accretion disk. Tan & McKee [357]
studied these effects by extrapolating analytically the infall of gas from the
final snapshot of the above resolution-limited simulations to the scale of a
proto-star; they concluded that nuclear burning (and hence the feedback)
starts when the proton-star accretes ∼ 30M⊙ and accretion is likely to be
terminated when the star reaches ∼ 200M⊙.

Fig. 23. Zooming in on the core of a star forming region with the Adaptive Mesh
Refinement simulation of Abel et al. (2000) [4]. The panels show different length
scales, decreasing clockwise by an order of magnitude between adjacent panels. Note
the large dynamic range of scales which are being resolved, from 6 kpc (top left panel)
down to 10,000 AU (bottom left panel).

If the clumps in the above simulations end up forming individual very
massive stars, then these stars will likely radiate copious amounts of ionizing
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Fig. 24. Gas profiles from the simulation of Abel et al. (2000)[4]. The cell size on
the finest grid corresponds to 0.024 pc, while the simulation box size corresponds to
6.4 kpc. Shown are spherically-averaged mass-weighted profiles around the baryon
density peak shortly before a well defined fragment forms (z = 19.1). Panel (a)
shows the baryonic number density, enclosed gas mass in solar mass, and the local
Bonnor-Ebert mass MBE (see text). Panel (b) plots the molecular hydrogen fraction
(by number) fH2

and the free electron fraction x. The H2 cooling time, tH2
, the

time it takes a sound wave to travel to the center, tcross, and the free–fall time
tff = [3π/(32Gρ)]1/2 are given in panel (c). Panel (d) gives the temperature in K
as a function of radius. The bottom panel gives the local sound speed, cs (solid line
with circles), the rms radial velocities of the dark matter (dashed line) and the gas
(dashed line with asterisks) as well as the rms gas velocity (solid line with square
symbols). The vertical dotted line indicates the radius (∼ 5 pc) at which the gas
has reached its minimum temperature allowed by H2 cooling. The virial radius of
the 5.6 × 106M⊙ halo is 106 pc.

radiation [50, 370, 59] and expel strong winds. Hence, the stars will have a large
effect on their interstellar environment, and feedback is likely to control the
overall star formation efficiency. This efficiency is likely to be small in galactic
potential wells which have a virial temperature lower than the temperature
of photoionized gas, ∼ 104K. In such potential wells, the gas may go through
only a single generation of star formation, leading to a “suicidal” population
of massive stars.

The final state in the evolution of these stars is uncertain; but if their mass
loss is not too extensive, then they are likely to end up as black holes [50, 137].
The remnants may provide the seeds of quasar black holes [215]. Some of the
massive stars may end their lives by producing gamma-ray bursts. If so then
the broad-band afterglows of these bursts could provide a powerful tool for
probing the epoch of reionization [214, 94]). There is no better way to end the
dark ages than with γ-ray burst fireworks.
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Where are the first stars or their remnants located today? The very first
stars formed in rare high-σ peaks and hence are likely to populate the cores
of present-day galaxies [380]. However, the bulk of the stars which formed
in low-mass systems at later times are expected to behave similarly to the
collisionless dark matter particles and populate galaxy halos [221].

5.2 The Mass Function of Stars

Currently, we do not have direct observational constraints on how the first
stars, the so-called Population III stars, formed at the end of the cosmic dark
ages. It is, therefore, instructive to briefly summarize what we have learned
about star formation in the present-day Universe, where theoretical reasoning
is guided by a wealth of observational data (see [293] for a recent review).

Population I stars form out of cold, dense molecular gas that is structured
in a complex, highly inhomogeneous way. The molecular clouds are supported
against gravity by turbulent velocity fields and pervaded on large scales by
magnetic fields. Stars tend to form in clusters, ranging from a few hundred up
to ∼ 106 stars. It appears likely that the clustered nature of star formation
leads to complicated dynamics and tidal interactions that transport angular
momentum, thus allowing the collapsing gas to overcome the classical centrifu-
gal barrier [216]. The initial mass function (IMF) of Pop I stars is observed
to have the approximate Salpeter form (e.g., [208])

dN

dlogM
∝ Mx , (105)

where

x ≃
{

−1.35 for M ≥ 0.5M⊙

0.0 for 0.007 ≤ M ≤ 0.5M⊙
. (106)

The lower cutoff in mass corresponds roughly to the opacity limit for frag-
mentation. This limit reflects the minimum fragment mass, set when the rate
at which gravitational energy is released during the collapse exceeds the rate
at which the gas can cool (e.g., [298]). The most important feature of the
observed IMF is that ∼ 1M⊙ is the characteristic mass scale of Pop I star for-
mation, in the sense that most of the mass goes into stars with masses close
to this value. In Figure 25, we show the result from a recent hydrodynamical
simulation of the collapse and fragmentation of a molecular cloud core [31, 32].
This simulation illustrates the highly dynamic and chaotic nature of the star
formation process6.

The metal-rich chemistry, magnetohydrodynamics, and radiative transfer
involved in present-day star formation is complex, and we still lack a com-
prehensive theoretical framework that predicts the IMF from first principles.
Star formation in the high redshift Universe, on the other hand, poses a the-
oretically more tractable problem due to a number of simplifying features,

6 See http:// www.ukaff.ac.uk/starcluster for an animation.
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Fig. 25. A hydrodynamic simulation of the collapse and fragmentation of a turbu-
lent molecular cloud in the present-day Universe (from [32]). The cloud has a mass
of 50M⊙. The panels show the column density through the cloud, and span a scale
of 0.4 pc across. Left: The initial phase of the collapse. The turbulence organizes
the gas into a network of filaments, and decays thereafter through shocks. Right:
A snapshot taken near the end of the simulation, after 1.4 initial free-fall times of
2 × 105yr. Fragmentation has resulted in ∼ 50 stars and brown dwarfs. The star
formation efficiency is ∼ 10% on the scale of the overall cloud, but can be much
larger in the dense sub-condensations. This result is in good agreement with what
is observed in local star-forming regions.

such as: (i) the initial absence of heavy metals and therefore of dust; and
(ii) the absence of dynamically-significant magnetic fields, in the pristine gas
left over from the big bang. The cooling of the primordial gas does then only
depend on hydrogen in its atomic and molecular form. Whereas in the present-
day interstellar medium, the initial state of the star forming cloud is poorly
constrained, the corresponding initial conditions for primordial star forma-
tion are simple, given by the popular ΛCDM model of cosmological structure
formation. We now turn to a discussion of this theoretically attractive and
important problem.

How did the first stars form? A complete answer to this question would
entail a theoretical prediction for the Population III IMF, which is rather
challenging. Let us start by addressing the simpler problem of estimating the
characteristic mass scale of the first stars. As mentioned before, this mass
scale is observed to be ∼ 1M⊙ in the present-day Universe.

Bromm & Loeb (2004) [67] carried out idealized simulations of the proto-
stellar accretion problem and estimated the final mass of a Population III star.
Using the smoothed particle hydrodynamics (SPH) method, they included the
chemistry and cooling physics relevant for the evolution of metal-free gas (see
[62] for details). Improving on earlier work [57, 62] by initializing the simula-
tions according to the ΛCDM model, they focused on an isolated overdense
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region that corresponds to a 3σ−peak [67]: a halo containing a total mass of
106M⊙, and collapsing at a redshift zvir ≃ 20. In these runs, one high-density
clump has formed at the center of the minihalo, possessing a gas mass of a
few hundred solar masses. Soon after its formation, the clump becomes grav-
itationally unstable and undergoes runaway collapse. Once the gas clump has
exceeded a threshold density of 107 cm−3, it is replaced by a sink particle
which is a collisionless point-like particle that is inserted into the simulation.
This choice for the density threshold ensures that the local Jeans mass is
resolved throughout the simulation. The clump (i.e., sink particle) has an ini-
tial mass of MCl ≃ 200M⊙, and grows subsequently by ongoing accretion of
surrounding gas. High-density clumps with such masses result from the chem-
istry and cooling rate of molecular hydrogen, H2, which imprint characteristic
values of temperature, T ∼ 200 K, and density, n ∼ 104 cm−3, into the metal-
free gas [62]. Evaluating the Jeans mass for these characteristic values results
in MJ ∼ a few × 102M⊙, which is close to the initial clump masses found
in the simulations.

Fig. 26. Collapse and fragmentation of a primordial cloud (from [67]). Shown is
the projected gas density at a redshift z ≃ 21.5, briefly after gravitational runaway
collapse has commenced in the center of the cloud. Left: The coarse-grained mor-
phology in a box with linear physical size of 23.5 pc. At this time in the unrefined
simulation, a high-density clump (sink particle) has formed with an initial mass of
∼ 103M⊙. Right: The refined morphology in a box with linear physical size of 0.5 pc.
The central density peak, vigorously gaining mass by accretion, is accompanied by
a secondary clump.

The high-density clumps are clearly not stars yet. To probe the subsequent
fate of a clump, Bromm & Loeb (2004) [67] have re-simulated the evolution
of the central clump with sufficient resolution to follow the collapse to higher
densities. Figure 26 (right panel) shows the gas density on a scale of 0.5 pc,
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Fig. 27. Accretion onto a primordial protostar (from [67]). The morphology of this
accretion flow is shown in Fig. 26. Left: Accretion rate (in M⊙ yr−1) vs. time (in yr)
since molecular core formation. Right: Mass of the central core (in M⊙) vs. time.
Solid line: Accretion history approximated as: M∗ ∝ t0.45. Using this analytical
approximation, we extrapolate that the protostellar mass has grown to ∼ 150M⊙

after ∼ 105 yr, and to ∼ 700M⊙ after ∼ 3 × 106 yr, the total lifetime of a very
massive star.

which is two orders of magnitude smaller than before. Several features are
evident in this plot. First, the central clump does not undergo further sub-
fragmentation, and is likely to form a single Population III star. Second, a
companion clump is visible at a distance of ∼ 0.25 pc. If negative feedback
from the first-forming star is ignored, this companion clump would undergo
runaway collapse on its own approximately ∼ 3 Myr later. This timescale is
comparable to the lifetime of a very massive star (VMS)[59]. If the second
clump was able to survive the intense radiative heating from its neighbor, it
could become a star before the first one explodes as a supernova (SN). Whether
more than one star can form in a low-mass halo thus crucially depends on the
degree of synchronization of clump formation. Finally, the non-axisymmetric
disturbance induced by the companion clump, as well as the angular momen-
tum stored in the orbital motion of the binary system, allow the system to
overcome the angular momentum barrier for the collapse of the central clump
(see [216]).

The recent discovery of stars like HE0107-5240 with a mass of 0.8M⊙

and an iron abundance of [Fe/H] = −5.3 [90] shows that at least some low
mass stars could have formed out of extremely low-metallicity gas. The above
simulations show that although the majority of clumps are very massive, a
few of them, like the secondary clump in Fig. 26, are significantly less massive.
Alternatively, low-mass fragments could form in the dense, shock-compressed
shells that surround the first hypernovae [234].
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How massive were the first stars? Star formation typically proceeds from
the ‘inside-out’, through the accretion of gas onto a central hydrostatic core.
Whereas the initial mass of the hydrostatic core is very similar for primordial
and present-day star formation [274], the accretion process – ultimately re-
sponsible for setting the final stellar mass, is expected to be rather different.
On dimensional grounds, the accretion rate is simply related to the sound
speed cubed over Newton’s constant (or equivalently given by the ratio of the
Jeans mass and the free-fall time): Ṁacc ∼ c3

s/G ∝ T 3/2. A simple compari-
son of the temperatures in present-day star forming regions (T ∼ 10 K) with
those in primordial ones (T ∼ 200 − 300 K) already indicates a difference in
the accretion rate of more than two orders of magnitude.

The above refined simulation enables one to study the three-dimensional
accretion flow around the protostar (see also [276, 304, 357]). The gas may
now reach densities of 1012 cm−3 before being incorporated into a central sink
particle. At these high densities, three-body reactions [280] convert the gas
into a fully molecular form. Figure 27 shows how the molecular core grows
in mass over the first ∼ 104 yr after its formation. The accretion rate (left
panel) is initially very high, Ṁacc ∼ 0.1M⊙ yr−1, and subsequently declines
according to a power law, with a possible break at ∼ 5000 yr. The mass of the
molecular core (right panel), taken as an estimator of the proto-stellar mass,
grows approximately as: M∗ ∼

∫

Ṁaccdt ∝ t0.45. A rough upper limit for the
final mass of the star is then: M∗(t = 3 × 106yr) ∼ 700M⊙. In deriving this
upper bound, we have conservatively assumed that accretion cannot go on for
longer than the total lifetime of a massive star.

Can a Population III star ever reach this asymptotic mass limit? The an-
swer to this question is not yet known with any certainty, and it depends on
whether the accretion from a dust-free envelope is eventually terminated by
feedback from the star (e.g., [276, 304, 357, 277]). The standard mechanism
by which accretion may be terminated in metal-rich gas, namely radiation
pressure on dust grains [386], is evidently not effective for gas with a primor-
dial composition. Recently, it has been speculated that accretion could instead
be turned off through the formation of an H II region [277], or through the
photo-evaporation of the accretion disk [357]. The termination of the accre-
tion process defines the current unsolved frontier in studies of Population III
star formation. Current simulations indicate that the first stars were pre-
dominantly very massive (> 30M⊙), and consequently rather different from
present-day stellar populations. The crucial question then arises: How and
when did the transition take place from the early formation of massive stars
to that of low-mass stars at later times? We address this problem next.

The very first stars, marking the cosmic Renaissance of structure forma-
tion, formed under conditions that were much simpler than the highly complex
environment in present-day molecular clouds. Subsequently, however, the sit-
uation rapidly became more complicated again due to the feedback from the
first stars on the IGM. Supernova explosions dispersed the nucleosynthetic
products from the first generation of stars into the surrounding gas (e.g.,



First Light 57

[241, 261, 361]), including also dust grains produced in the explosion itself
[222, 364]. Atomic and molecular cooling became much more efficient after
the addition of these metals. Moreover, the presence of ionizing cosmic rays,
as well as of UV and X-ray background photons, modified the thermal and
chemical behavior of the gas in important ways (e.g., [232, 233]).

Early metal enrichment was likely the dominant effect that brought about
the transition from Population III to Population II star formation. Recent
numerical simulations of collapsing primordial objects with overall masses of
∼ 106M⊙, have shown that the gas has to be enriched with heavy elements
to a minimum level of Zcrit ≃ 10−3.5Z⊙, in order to have any effect on the
dynamics and fragmentation properties of the system [275, 60, 64]. Normal,
low-mass (Population II) stars are hypothesized to only form out of gas with
metallicity Z ≥ Zcrit. Thus, the characteristic mass scale for star formation
is expected to be a function of metallicity, with a discontinuity at Zcrit where
the mass scale changes by ∼ two orders of magnitude. The redshift where this
transition occurs has important implications for the early growth of cosmic
structure, and the resulting observational signature (e.g., [392, 141, 234, 322])
include the extended nature of reionization [144].

For additional detailes about the properties of the first stars, see the com-
prehensive review by Bromm & Larson (2004) [66].

5.3 Gamma-ray Bursts: Probing the First Stars One Star at a
Time

Gamma-Ray Bursts (GRBs) are believed to originate in compact remnants
(neutron stars or black holes) of massive stars. Their high luminosities make
them detectable out to the edge of the visible Universe [94, 214]. GRBs offer
the opportunity to detect the most distant (and hence earliest) population of
massive stars, the so-called Population III (or Pop III), one star at a time. In
the hierarchical assembly process of halos which are dominated by cold dark
matter (CDM), the first galaxies should have had lower masses (and lower
stellar luminosities) than their low-redshift counterparts. Consequently, the
characteristic luminosity of galaxies or quasars is expected to decline with
increasing redshift. GRB afterglows, which already produce a peak flux com-
parable to that of quasars or starburst galaxies at z ∼ 1 − 2, are therefore
expected to outshine any competing source at the highest redshifts, when the
first dwarf galaxies have formed in the Universe.

The first-year polarization data from the Wilkinson Microwave Anisotropy
Probe (WMAP) indicates an optical depth to electron scattering of ∼ 17 ±
4% after cosmological recombination [203, 348]. This implies that the first
stars must have formed at a redshift z ∼10–20, and reionized a substantial
fraction of the intergalactic hydrogen around that time [83, 93, 345, 394, 403].
Early reionization can be achieved with plausible star formation parameters
in the standard ΛCDM cosmology; in fact, the required optical depth can
be achieved in a variety of very different ionization histories since WMAP
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Fig. 28. Illustration of a long-duration gamma-ray burst in the popular “collapsar”
model. The collapse of the core of a massive star (which lost its hydrogen envelope)
to a black hole generates two opposite jets moving out at a speed close to the speed
of light. The jets drill a hole in the star and shine brightly towards an observer
who happened to be located within with the collimation cones of the jets. The jets
emenating from a single massive star are so bright that they can be seen across the
Universe out to the epoch when the first stars have formed. Upcoming observations
by the Swift satellite will have the sensitivity to reveal whether the first stars served
as progenitors of gamma-ray bursts (for updates see http://swift.gsfc.nasa.gov/).

places only an integral constraint on these histories [176]. One would like to
probe the full history of reionization in order to disentangle the properties
and formation history of the stars that are responsible for it. GRB afterglows
offer the opportunity to detect stars as well as to probe the metal enrichment
level [141] of the intervening IGM.

GRBs, the electromagnetically-brightest explosions in the Universe, should
be detectable out to redshifts z > 10 [94, 214]. High-redshift GRBs can be
identified through infrared photometry, based on the Lyα break induced by ab-
sorption of their spectrum at wavelengths below 1.216 µm[(1+z)/10]. Follow-
up spectroscopy of high-redshift candidates can then be performed on a 10-
meter-class telescope. Recently, the ongoing Swift mission [147] has detected
a GRB originating at z ≃ 6.3 (e.g., [179]), thus demonstrating the viability of
GRBs as probes of the early Universe.

There are four main advantages of GRBs relative to traditional cosmic
sources such as quasars:
(i) The GRB afterglow flux at a given observed time lag after the γ-ray
trigger is not expected to fade significantly with increasing redshift, since
higher redshifts translate to earlier times in the source frame, during which the
afterglow is intrinsically brighter [94]. For standard afterglow lightcurves and
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spectra, the increase in the luminosity distance with redshift is compensated
by this cosmological time-stretching effect.

Fig. 29. GRB afterglow flux as a function of time since the γ-ray trigger in the ob-
server frame (taken from [67]). The flux (solid curves) is calculated at the redshifted
Lyα wavelength. The dotted curves show the planned detection threshold for the
James Webb Space Telescope (JWST), assuming a spectral resolution R = 5000 with
the near infrared spectrometer, a signal to noise ratio of 5 per spectral resolution
element, and an exposure time equal to 20% of the time since the GRB explosion
(see http://www.ngst.stsci.edu/nms/main/ ). Each set of curves shows a sequence
of redshifts, namely z = 5, 7, 9, 11, 13, and 15, respectively, from top to bottom.

(ii) As already mentioned, in the standard ΛCDM cosmology, galaxies form
hierarchically, starting from small masses and increasing their average mass
with cosmic time. Hence, the characteristic mass of quasar black holes and the
total stellar mass of a galaxy were smaller at higher redshifts, making these
sources intrinsically fainter [391]. However, GRBs are believed to originate
from a stellar mass progenitor and so the intrinsic luminosity of their engine
should not depend on the mass of their host galaxy. GRB afterglows are
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therefore expected to outshine their host galaxies by a factor that gets larger
with increasing redshift.
(iii) Since the progenitors of GRBs are believed to be stellar, they likely orig-
inate in the most common star-forming galaxies at a given redshift rather
than in the most massive host galaxies, as is the case for bright quasars [26].
Low-mass host galaxies induce only a weak ionization effect on the surround-
ing IGM and do not greatly perturb the Hubble flow around them. Hence,
the Lyα damping wing should be closer to the idealized unperturbed IGM
case and its detailed spectral shape should be easier to interpret. Note also
that unlike the case of a quasar, a GRB afterglow can itself ionize at most
∼ 4 × 104E51M⊙ of hydrogen if its UV energy is E51 in units of 1051 ergs
(based on the available number of ionizing photons), and so it should have a
negligible cosmic effect on the surrounding IGM.
(iv) GRB afterglows have smooth (broken power-law) continuum spectra un-
like quasars which show strong spectral features (such as broad emission lines
or the so-called “blue bump”) that complicate the extraction of IGM absorp-
tion features. In particular, the continuum extrapolation into the Lyα damp-
ing wing (the so-called Gunn-Peterson absorption trough) during the epoch
of reionization is much more straightforward for the smooth UV spectra of
GRB afterglows than for quasars with an underlying broad Lyα emission line
[26].

The optical depth of the uniform IGM to Lyα absorption is given by (Gunn
& Peterson 1965 [163]),

τs =
πe2fαλαnH I (zs)

mecH(zs)
≈ 6.45 × 105xH I

(
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where H ≈ 100h km s−1 Mpc−1Ω
1/2
m (1 + zs)

3/2 is the Hubble parameter at
the source redshift zs >> 1, fα = 0.4162 and λα = 1216Å are the os-
cillator strength and the wavelength of the Lyα transition; nH I (zs) is the
neutral hydrogen density at the source redshift (assuming primordial abun-
dances); Ωm and Ωb are the present-day density parameters of all matter
and of baryons, respectively; and xH I is the average fraction of neutral hy-
drogen. In the second equality we have implicitly considered high-redshifts,
(1 + z) ≫ max

[

(1 − Ωm − ΩΛ)/Ωm, (ΩΛ/Ωm)1/3
]

, at which the vacuum en-
ergy density is negligible relative to matter (ΩΛ ≪ Ωm) and the Universe is
nearly flat; for Ωm = 0.3, ΩΛ = 0.7 this corresponds to the condition z ≫ 1.3
which is well satisfied by the reionization redshift.

At wavelengths longer than Lyα at the source, the optical depth obtains
a small value; these photons redshift away from the line center along its red
wing and never resonate with the line core on their way to the observer. The
red damping wing of the Gunn-Peterson trough (Miralda-Escudé 1998 [254])
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where τs is given in equation (107), also we define
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Although the nature of the central engine that powers the relativistic jets
of GRBs is still unknown, recent evidence indicates that long-duration GRBs
trace the formation of massive stars (e.g., [365, 383, 45, 211, 47, 264]) and in
particular that long-duration GRBs are associated with Type Ib/c supernovae
[351]. Since the first stars in the Universe are predicted to be predominantly
massive [5, 62, 66], their death might give rise to large numbers of GRBs at
high redshifts. In contrast to quasars of comparable brightness, GRB after-
glows are short-lived and release ∼ 10 orders of magnitude less energy into the
surrounding IGM. Beyond the scale of their host galaxy, they have a negligible
effect on their cosmological environment7. Consequently, they are ideal probes
of the IGM during the reionization epoch. Their rest-frame UV spectra can be
used to probe the ionization state of the IGM through the spectral shape of
the Gunn-Peterson (Lyα) absorption trough, or its metal enrichment history
through the intersection of enriched bubbles of supernova (SN) ejecta from
early galaxies [141]. Afterglows that are unusually bright (> 10mJy) at radio
frequencies should also show a detectable forest of 21 cm absorption lines due
to enhanced HI column densities in sheets, filaments, and collapsed minihalos
within the IGM [76, 140].

Another advantage of GRB afterglows is that once they fade away, one
may search for their host galaxies. Hence, GRBs may serve as signposts of
the earliest dwarf galaxies that are otherwise too faint or rare on their own
for a dedicated search to find them. Detection of metal absorption lines from
the host galaxy in the afterglow spectrum, offers an unusual opportunity to
study the physical conditions (temperature, metallicity, ionization state, and
kinematics) in the interstellar medium of these high-redshift galaxies. As Fig-
ure 30 indicates, damped Lyα absorption within the host galaxy may mask
the clear signature of the Gunn-Peterson trough in some galaxies [67]. A
small fraction (∼ 10) of the GRB afterglows are expected to originate at
redshifts z > 5 [61, 68]. This subset of afterglows can be selected photomet-
rically using a small telescope, based on the Lyα break at a wavelength of

7 Note, however, that feedback from a single GRB or supernova on the gas confined
within early dwarf galaxies could be dramatic, since the binding energy of most
galaxies at z > 10 is lower than 1051 ergs [23].
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Fig. 30. Expected spectral shape of the Lyα absorption trough due to intergalactic
absorption in GRB afterglows (taken from [67]). The spectrum is presented in terms
of the flux density Fν versus relative observed wavelength ∆λ, for a source redshift
z = 7 (assumed to be prior to the final reionization phase) and the typical halo mass
M = 4 × 108M⊙ expected for GRB host galaxies that cool via atomic transitions.
Top panel: Two examples for the predicted spectrum including IGM HI absorption
(both resonant and damping wing), for host galaxies with (i) an age tS = 107 yr,
a UV escape fraction fesc = 10% and a Scalo initial mass function (IMF) in solid
curves, or (ii) tS = 108 yr, fesc = 90% and massive (> 100M⊙) Pop III stars in
dashed curves. The observed time after the γ-ray trigger is one hour, one day, and
ten days, from top to bottom, respectively. Bottom panel: Predicted spectra one
day after a GRB for a host galaxy with tS = 107 yr, fesc = 10% and a Scalo IMF.
Shown is the unabsorbed GRB afterglow (dot-short dashed curve), the afterglow
with resonant IGM absorption only (dot-long dashed curve), and the afterglow with
full (resonant and damping wing) IGM absorption (solid curve). Also shown, with
1.7 magnitudes of extinction, are the afterglow with full IGM absorption (dotted
curve), and attempts to reproduce this profile with a damped Lyα absorption system
in the host galaxy (dashed curves). (Note, however, that damped absorption of this
type could be suppressed by the ionizing effect of the afterglow UV radiation on
the surrounding interstellar medium of its host galaxy[289].) Most importantly, the
overall spectral shape of the Lyα trough carries precious information about the
neutral fraction of the IGM at the source redshift; averaging over an ensemble of
sources with similar redshifts can reduce ambiguities in the interpretation of each
case due to particular local effects.
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1.216 µm[(1+ z)/10], caused by intergalactic HI absorption. The challenge in
the upcoming years will be to follow-up on these candidates spectroscopically,
using a large (10-meter class) telescope. GRB afterglows are likely to revolu-
tionize observational cosmology and replace traditional sources like quasars,
as probes of the IGM at z > 5. The near future promises to be exciting for
GRB astronomy as well as for studies of the high-redshift Universe.

It is of great importance to constrain the Pop III star formation mode,
and in particular to determine down to which redshift it continues to be
prominent. The extent of the Pop III star formation will affect models of the
initial stages of reionization (e.g., [394, 93, 343, 403, 12]) and metal enrichment
(e.g., [234, 141, 144, 320, 340]), and will determine whether planned surveys
will be able to effectively probe Pop III stars (e.g., [319]). The constraints
on Pop III star formation will also determine whether the first stars could
have contributed a significant fraction to the cosmic near-IR background (e.g.,
[311, 310, 193, 242, 113]). To constrain high-redshift star formation from GRB
observations, one has to address two major questions:
(1) What is the signature of GRBs that originate in metal-free, Pop III pro-
genitors? Simply knowing that a given GRB came from a high redshift is not
sufficient to reach a definite conclusion as to the nature of the progenitor.
Pregalactic metal enrichment was likely inhomogeneous, and we expect nor-
mal Pop I and II stars to exist in galaxies that were already metal-enriched
at these high redshifts [68]. Pop III and Pop I/II star formation is thus pre-
dicted to have occurred concurrently at z > 5. How is the predicted high
mass-scale for Pop III stars reflected in the observational signature of the
resulting GRBs? Preliminary results from numerical simulations of Pop III
star formation indicate that circumburst densities are systematically higher
in Pop III environments. GRB afterglows will then be much brighter than
for conventional GRBs. In addition, due to the systematically increased pro-
genitor masses, the Pop III distribution may be biased toward long-duration
events.
(2) The modelling of Pop III cosmic star formation histories has a number of
free parameters, such as the star formation efficiency and the strength of the
chemical feedback. The latter refers to the timescale for, and spatial extent
of, the distribution of the first heavy elements that were produced inside of
Pop III stars, and subsequently dispersed into the IGM by supernova blast
waves. Comparing with theoretical GRB redshift distributions one can use
the GRB redshift distribution observed by Swift to calibrate the free model
parameters. In particular, one can use this strategy to measure the redshift
where Pop III star formation terminates.

Figures 31 and 32 illustrate these issues (based on [68]). Figure 32 leads
to the robust expectation that ∼ 10% of all Swift bursts should originate at
z > 5. This prediction is based on the contribution from Population I/II stars
which are known to exist even at these high redshifts. Additional GRBs could
be triggered by Pop III stars, with a highly uncertain efficiency. Assuming
that long-duration GRBs are produced by the collapsar mechanism, a Pop III
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Fig. 31. Theoretical prediction for the comoving star formation rate (SFR) in units
of M⊙ yr−1 Mpc−3, as a function of redshift (from [68]). We assume that cooling
in primordial gas is due to atomic hydrogen only, a star formation efficiency of
η∗ = 10%, and reionization beginning at zreion ≈ 17. Solid line: Total comoving
SFR. Dotted lines: Contribution to the total SFR from Pop I/II and Pop III for the
case of weak chemical feedback. Dashed lines: Contribution to the total SFR from
Pop I/II and Pop III for the case of strong chemical feedback. Pop III star formation
is restricted to high redshifts, but extends over a significant range, ∆z ∼ 10 − 15.

star with a close binary companion provides a plausible GRB progenitor. The
Pop III GRB efficiency, reflecting the probability of forming sufficiently close
and massive binary systems, to lie between zero (if tight Pop III binaries do
not exist) and ∼ 10 times the empirically inferred value for Population I/II
(due to the increased fraction of black hole forming progenitors among the
massive Pop III stars).

A key ingredient in determining the underlying star formation history
from the observed GRB redshift distribution is the GRB luminosity function,
which is only poorly constrained at present. The improved statistics provided
by Swift will enable the construction of an empirical luminosity function.
With an improved luminosity function it would be possible to re-calibrate the
theoretical prediction in Figure 2 more reliably.

In order to predict the observational signature of high-redshift GRBs, it is
important to know the properties of the GRB host systems. Within variants
of the popular CDM model for structure formation, where small objects form
first and subsequently merge to build up more massive ones, the first stars are
predicted to form at z ∼ 20–30 in minihalos of total mass (dark matter plus
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Fig. 32. Predicted GRB rate to be observed by Swift (from [68]). Shown is the
observed number of bursts per year, dNobs

GRB/d ln(1+z), as a function of redshift. All
rates are calculated with a constant GRB efficiency, ηGRB ≃ 2 × 10−9 bursts M−1

⊙ ,
using the cosmic SFRs from Fig. 31. Dotted lines: Contribution to the observed
GRB rate from Pop I/II and Pop III for the case of weak chemical feedback. Dashed
lines: Contribution to the GRB rate from Pop I/II and Pop III for the case of
strong chemical feedback. Filled circle: GRB rate from Pop III stars if these were
responsible for reionizing the Universe at z ∼ 17.

gas) ∼ 106M⊙ [359, 23, 403]. These objects are the sites for the formation of
the first stars, and thus are the potential hosts of the highest-redshift GRBs.
What is the environment in which the earliest GRBs and their afterglows did
occur? This problem breaks down into two related questions: (i) what type
of stars (in terms of mass, metallicity, and clustering properties) will form
in each minihalo?, and (ii) how will the ionizing radiation from each star
modify the density structure of the surrounding gas? These two questions are
fundamentally intertwined. The ionizing photon production strongly depends
on the stellar mass, which in turn is determined by how the accretion flow
onto the growing protostar proceeds under the influence of this radiation field.
In other words, the assembly of the Population III stars and the development
of an HII region around them proceed simultaneously, and affect each other.
As a preliminary illustration, Figure 27 describes the photo-evaporation as a
self-similar champagne flow [337] with parameters appropriate for the Pop III
case.

Notice that the central density is significantly reduced by the end of the
life of a massive star, and that a central core has developed where the density
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Fig. 33. Effect of photoheating from a Population III star on the density profile in
a high-redshift minihalo (from [69]). The curves, labeled by the time after the onset
of the central point source, are calculated according to a self-similar model for the
expansion of an HII region. Numerical simulations closely conform to this analytical
behavior. Notice that the central density is significantly reduced by the end of the
life of a massive star, and that a central core has developed where the density is
constant.

is nearly constant. Such a flat density profile is markedly different from that
created by stellar winds (ρ ∝ r−2). Winds, and consequently mass-loss, may
not be important for massive Population III stars [18, 210], and such a flat
density profile may be characteristic of GRBs that originate from metal-free
Population III progenitors.

The first galaxies may be surrounded by a shell of highly enriched material
that was carried out in a SN-driven wind (see Fig. 34). A GRB in that galaxy
may show strong absorption lines at a velocity separation associated with the
wind velocity. Simulating these winds and calculating the absorption profile in
the featureless spectrum of a GRB afterglow, will allow us to use the observed
spectra of high-z GRBs and directly probe the degree of metal enrichment in
the vicinity of the first star forming regions (see [141] for a semi-analytic
treatment).

As the early afterglow radiation propagates through the interstellar en-
vironment of the GRB, it will likely modify the gas properties close to the
source; these changes could in turn be noticed as time-dependent spectral fea-
tures in the spectrum of the afterglow and used to derive the properties of the
gas cloud (density, metal abundance, and size). The UV afterglow radiation
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Fig. 34. Supernova explosion in the high-redshift Universe (from [65]). The snapshot
is taken ∼ 106 yr after the explosion with total energy ESN ≃ 1053 ergs. We show
the projected gas density within a box of linear size 1 kpc. The SN bubble has
expanded to a radius of ∼ 200 pc, having evacuated most of the gas in the minihalo.
Inset: Distribution of metals. The stellar ejecta (gray dots) trace the metals and are
embedded in pristine metal-poor gas (black dots).

can induce detectable changes to the interstellar absorption features of the
host galaxy [289]; dust destruction could have occurred due to the GRB X-
rays [375, 136], and molecules could have been destroyed near the GRB source
[112]. Quantitatively, all of the effects mentioned above strongly depend on
the exact properties of the gas in the host system.

Most studies to date have assumed a constant efficiency of forming GRBs
per unit mass of stars. This simplifying assumption could lead, under different
circumstances, to an overestimation or an underestimation of the frequency of
GRBs. Metal-free stars are thought to be massive [5, 62] and their extended
envelopes may suppress the emergence of relativistic jets out of their surface
(even if such jets are produced through the collapse of their core to a spinning
black hole). On the other hand, low-metallicity stars are expected to have
weak winds with little angular momentum loss during their evolution, and so
they may preferentially yield rotating central configurations that make GRB
jets after core collapse.

What kind of metal-free, Pop III progenitor stars may lead to GRBs? Long-
duration GRBs appear to be associated with Type Ib/c supernovae [351],
namely progenitor massive stars that have lost their hydrogen envelope. This
requirement is explained theoretically in the collapsar model, in which the
relativistic jets produced by core collapse to a black hole are unable to emerge
relativistically out of the stellar surface if the hydrogen envelope is retained
[231]. The question then arises as to whether the lack of metal line-opacity
that is essential for radiation-driven winds in metal-rich stars, would make a
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Pop III star retain its hydrogen envelope, thus quenching any relativistic jets
and GRBs.

Aside from mass transfer in a binary system, individual Pop III stars could
lose their hydrogen envelope due to either: (i) violent pulsations, particularly
in the mass range 100–140M⊙, or (ii) a wind driven by helium lines. The
outer stellar layers are in a state where gravity only marginally exceeds radia-
tion pressure due to electron-scattering (Thomson) opacity. Adding the small,
but still non-negligible contribution from the bound-free opacity provided by
singly-ionized helium, may be able to unbind the atmospheric gas. Therefore,
mass-loss might occur even in the absence of dust or any heavy elements.

5.4 Emission Spectrum of Metal-Free Stars

The evolution of metal-free (Population III) stars is qualitatively different
from that of enriched (Population I and II) stars. In the absence of the cata-
lysts necessary for the operation of the CNO cycle, nuclear burning does not
proceed in the standard way. At first, hydrogen burning can only occur via
the inefficient PP chain. To provide the necessary luminosity, the star has to
reach very high central temperatures (Tc ≃ 108.1 K). These temperatures are
high enough for the spontaneous turn-on of helium burning via the triple-α
process. After a brief initial period of triple-α burning, a trace amount of
heavy elements forms. Subsequently, the star follows the CNO cycle. In con-
structing main-sequence models, it is customary to assume that a trace mass
fraction of metals (Z ∼ 10−9) is already present in the star (El Eid 1983 [115];
Castellani et al. 1983 [78]).

Figures 35 and 36 show the luminosity L vs. effective temperature T for
zero-age main sequence stars in the mass ranges of 2–90M⊙ (Fig. 35) and
100–1000M⊙ (Fig. 36). Note that above ∼ 100M⊙ the effective temperature
is roughly constant, Teff ∼ 105K, implying that the spectrum is independent of
the mass distribution of the stars in this regime (Bromm, Kudritzky, & Loeb
2001 [59]). As is evident from these figures (see also Tumlinson & Shull 2000
[370]), both the effective temperature and the ionizing power of metal-free
(Pop III) stars are substantially larger than those of metal-rich (Pop I) stars.
Metal-free stars with masses > 20M⊙ emit between 1047 and 1048 H I and He
I ionizing photons per second per solar mass of stars, where the lower value
applies to stars of ∼ 20M⊙ and the upper value applies to stars of > 100M⊙

(see Tumlinson & Shull 2000 [370] and Bromm et al. 2001 [59] for more details).
Over a lifetime of ∼ 3×106 years these massive stars produce 104–105 ionizing
photons per stellar baryon. However, this powerful UV emission is suppressed
as soon as the interstellar medium out of which new stars form is enriched
by trace amounts of metals. Even though the collapsed fraction of baryons is
small at the epoch of reionization, it is likely that most of the stars responsible
for the reionization of the Universe formed out of enriched gas.
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Fig. 35. Luminosity vs. effective temperature for zero-age main sequences stars in
the mass range of 2–90M⊙ (from Tumlinson & Shull 2000 [370]). The curves show
Pop I (Z⊙ = 0.02) and Pop III stars of mass 2, 5, 8, 10, 15, 20, 25, 30, 35, 40, 50,
60, 70, 80, and 90 M⊙. The diamonds mark decades in metallicity in the approach
to Z = 0 from 10−2 down to 10−5 at 2 M⊙, down to 10−10 at 15 M⊙, and down
to 10−13 at 90 M⊙. The dashed line along the Pop III ZAMS assumes pure H-He
composition, while the solid line (on the left) marks the upper MS with ZC = 10−10

for the M ≥ 15 M⊙ models. Squares mark the points corresponding to pre-enriched
evolutionary models from El Eid et al. (1983) [115] at 80 M⊙ and from Castellani
et al. (1983) [78] for 25 M⊙.

Will it be possible to infer the initial mass function (IMF) of the first stars
from spectroscopic observations of the first galaxies? Figure 37 compares the
observed spectrum from a Salpeter IMF (dN⋆/dM ∝ M−2.35) and a heavy
IMF (with all stars more massive than 100M⊙) for a galaxy at zs = 10.
The latter case follows from the assumption that each of the dense clumps
in the simulations described in the previous section ends up as a single star
with no significant fragmentation or mass loss. The difference between the
plotted spectra cannot be confused with simple reddening due to normal dust.
Another distinguishing feature of the IMF is the expected flux in the hydrogen
and helium recombination lines, such as Lyα and He II 1640 Å, from the
interstellar medium surrounding these stars. We discuss this next.

5.5 Emission of Recombination Lines from the First Galaxies

The hard UV emission from a star cluster or a quasar at high redshift is likely
reprocessed by the surrounding interstellar medium, producing very strong
recombination lines of hydrogen and helium (Oh 1999 [270]; Tumlinson &
Shull 2000 [370]; see also Baltz, Gnedin & Silk 1998 [17]). We define Ṅion
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Fig. 36. Same as Figure 35 but for very massive stars above 100M⊙ (from Bromm,
Kudritzki, & Loeb 2001 [59]). Left solid line: Pop III zero-age main sequence
(ZAMS). Right solid line: Pop I ZAMS. In each case, stellar luminosity (in L⊙)
is plotted vs. effective temperature (in K). Diamond-shaped symbols: Stellar masses
along the sequence, from 100M⊙ (bottom) to 1000M⊙ (top) in increments of 100M⊙.
The Pop III ZAMS is systematically shifted to higher effective temperature, with a
value of ∼ 105 K which is approximately independent of mass. The luminosities, on
the other hand, are almost identical in the two cases.

to be the production rate of ionizing photons by the source. The emitted
luminosity Lem

line per unit stellar mass in a particular recombination line is
then estimated to be

Lem
line = pem

linehνṄion(1 − pesc
cont)p

esc
line , (111)

where pem
line is the probability that a recombination leads to the emission of a

photon in the corresponding line, ν is the frequency of the line and pesc
cont and

pesc
line are the escape probabilities for the ionizing photons and the line photons,

respectively. It is natural to assume that the stellar cluster is surrounded by a
finite H II region, and hence that pesc

cont is close to zero [387, 302]. In addition,
pesc
line is likely close to unity in the H II region, due to the lack of dust in the

ambient metal-free gas. Although the emitted line photons may be scattered
by neutral gas, they diffuse out to the observer and in the end survive if the
gas is dust free. Thus, for simplicity, we adopt a value of unity for pesc

line.
As a particular example we consider case B recombination which yields

pem
line of about 0.65 and 0.47 for the Lyα and He II 1640 Å lines, respectively.

These numbers correspond to an electron temperature of ∼ 3 × 104K and
an electron density of ∼ 102 − 103 cm−3 inside the H II region [354]. For
example, we consider the extreme and most favorable case of metal-free stars
all of which are more massive than ∼ 100M⊙. In this case Lem

line = 1.7 × 1037

and 2.2× 1036 erg s−1M−1
⊙ for the recombination luminosities of Lyα and He
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Fig. 37. Comparison of the predicted flux from a Pop III star cluster at zs = 10
for a Salpeter IMF (Tumlinson & Shull 2000 [370]) and a massive IMF (Bromm et
al. 2001 [59]). Plotted is the observed flux (in nJy per 106M⊙ of stars) vs. observed
wavelength (in µm) for a flat Universe with ΩΛ = 0.7 and h = 0.65. Solid line: The
case of a heavy IMF. Dotted line: The fiducial case of a standard Salpeter IMF. The
cutoff below λobs = 1216 Å (1 + zs) = 1.34µm is due to complete Gunn-Peterson
absorption (which is artificially assumed to be sharp). Clearly, for the same total
stellar mass, the observable flux is larger by an order of magnitude for stars which
are biased towards having masses > 100M⊙ .

II 1640 Å per stellar mass [59]. A cluster of 106M⊙ in such stars would then
produce 4.4 and 0.6 ×109L⊙ in the Lyα and He II 1640 Å lines. Comparably-
high luminosities would be produced in other recombination lines at longer
wavelengths, such as He II 4686 Å and Hα [270, 271].

The rest–frame equivalent width of the above emission lines measured
against the stellar continuum of the embedded star cluster at the line wave-
lengths is given by

Wλ =

(

Lem
line

Lλ

)

, (112)

where Lλ is the spectral luminosity per unit wavelength of the stars at the
line resonance. The extreme case of metal-free stars which are more massive
than 100M⊙ yields a spectral luminosity per unit frequency Lν = 2.7 × 1021

and 1.8× 1021 erg s−1 Hz−1M−1
⊙ at the corresponding wavelengths [59]. Con-

verting to Lλ, this yields rest-frame equivalent widths of Wλ = 3100 Å and
1100 Å for Lyα and He II 1640 Å , respectively. These extreme emission equiv-
alent widths are more than an order of magnitude larger than the expectation
for a normal cluster of hot metal-free stars with the same total mass and a
Salpeter IMF under the same assumptions concerning the escape probabili-
ties and recombination [209]. The equivalent widths are, of course, larger by a
factor of (1+zs) in the observer frame. Extremely strong recombination lines,
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such as Lyα and He II 1640 Å, are therefore expected to be an additional
spectral signature that is unique to very massive stars in the early Universe.
The strong recombination lines from the first luminous objects are potentially
detectable with JWST [271].

6 Supermassive Black holes

6.1 The Principle of Self-Regulation

The fossil record in the present-day Universe indicates that every bulged
galaxy hosts a supermassive black hole (BH) at its center [206]. This con-
clusion is derived from a variety of techniques which probe the dynamics of
stars and gas in galactic nuclei. The inferred BHs are dormant or faint most
of the time, but ocassionally flash in a short burst of radiation that lasts for
a small fraction of the Hubble time. The short duty cycle acounts for the fact
that bright quasars are much less abundant than their host galaxies, but it
begs the more fundamental question: why is the quasar activity so brief? A
natural explanation is that quasars are suicidal, namely the energy output
from the BHs regulates their own growth.

Supermassive BHs make up a small fraction, < 10−3, of the total mass
in their host galaxies, and so their direct dynamical impact is limited to the
central star distribution where their gravitational influence dominates. Dy-
namical friction on the background stars keeps the BH close to the center.
Random fluctuations in the distribution of stars induces a Brownian motion
of the BH. This motion can be decribed by the same Langevin equation that
captures the motion of a massive dust particle as it responds to random kicks
from the much lighter molecules of air around it [86]. The characteristic speed
by which the BH wanders around the center is small, ∼ (m⋆/MBH)1/2σ⋆,
where m⋆ and MBH are the masses of a single star and the BH, respectively,
and σ⋆ is the stellar velocity dispersion. Since the random force fluctuates
on a dynamical time, the BH wanders across a region that is smaller by a
factor of ∼ (m⋆/MBH)1/2 than the region traversed by the stars inducing the
fluctuating force on it.

The dynamical insignificance of the BH on the global galactic scale is mis-
leading. The gravitational binding energy per rest-mass energy of galaxies is
of order ∼ (σ⋆/c)2 < 10−6. Since BH are relativistic objects, the gravitational
binding energy of material that feeds them amounts to a substantial fraction
its rest mass energy. Even if the BH mass occupies a fraction as small as
∼ 10−4 of the baryonic mass in a galaxy, and only a percent of the accreted
rest-mass energy leaks into the gaseous environment of the BH, this slight
leakage can unbind the entire gas reservoir of the host galaxy! This order-
of-magnitude estimate explains why quasars are short lived. As soon as the
central BH accretes large quantities of gas so as to significantly increase its
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mass, it releases large amounts of energy that would suppress further accretion
onto it. In short, the BH growth is self-regulated.

The principle of self-regulation naturally leads to a correlation between
the final BH mass, Mbh, and the depth of the gravitational potential well
to which the surrounding gas is confined which can be characterized by the
velocity dispersion of the associated stars, ∼ σ2

⋆ . Indeed such a correlation is
observed in the present-day Universe [368]. The observed power-law relation
between Mbh and σ⋆ can be generalized to a correlation between the BH mass
and the circular velocity of the host halo, vc [130], which in turn can be related
to the halo mass, Mhalo, and redshift, z [394]

Mbh(Mhalo, z) = const × v5
c

= ǫoMhalo

(

Mhalo

1012M⊙

)
2

3

[ζ(z)]
5

6 (1 + z)
5

2 , (113)

where ǫo ≈ 10−5.7 is a constant, and as before ζ ≡ [(Ωm/Ωz
m)(∆c/18π2)],

Ωz
m ≡ [1+(ΩΛ/Ωm)(1+z)−3]−1, ∆c = 18π2 +82d−39d2, and d = Ωz

m−1. If
quasars shine near their Eddington limit as suggested by observations of low
and high-redshift quasars [134, 384], then the above value of ǫo implies that
a fraction of ∼ 5–10% of the energy released by the quasar over a galactic
dynamical time needs to be captured in the surrounding galactic gas in order
for the BH growth to be self-regulated [394].

With this interpretation, the Mbh–σ⋆ relation reflects the limit introduced
to the BH mass by self-regulation; deviations from this relation are inevitable
during episodes of BH growth or as a result of mergers of galaxies that have
no cold gas in them. A physical scatter around this upper envelope could
also result from variations in the efficiency by which the released BH energy
couples to the surrounding gas.

Various prescriptions for self-regulation were sketched by Silk & Rees [339].
These involve either energy or momentum-driven winds, where the latter type
is a factor of ∼ vc/c less efficient [35, 199, 262]. Wyithe & Loeb [394] demon-
strated that a particularly simple prescription for an energy-driven wind can
reproduce the luminosity function of quasars out to highest measured red-
shift, z ∼ 6 (see Figs. 38 and 40), as well as the observed clustering properties
of quasars at z ∼ 3 [398] (see Fig. 41). The prescription postulates that: (i)
self-regulation leads to the growth of Mbh up the redshift-independent limit
as a function of vc in Eq. (113), for all galaxies throughout their evolution;
and (ii) the growth of Mbh to the limiting mass in Eq. (113) occurs through
halo merger episodes during which the BH shines at its Eddington luminosity
(with the median quasar spectrum) over the dynamical time of its host galaxy,
tdyn. This model has only one adjustable parameter, namely the fraction of
the released quasar energy that couples to the surrounding gas in the host
galaxy. This parameter can be fixed based on the Mbh–σ⋆ relation in the lo-
cal Universe [130]. It is remarkable that the combination of the above simple
prescription and the standard ΛCDM cosmology for the evolution and merger
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Fig. 38. Comparison of the observed and model luminosity functions (from [394]).
The data points at z < 4 are summarized in Ref. [286], while the light lines show
the double power-law fit to the 2dF quasar luminosity function [56]. At z ∼ 4.3
and z ∼ 6.0 the data is from Refs. [125]. The grey regions show the 1-σ range
of logarithmic slope ([−2.25,−3.75] at z ∼ 4.3 and [−1.6,−3.1] at z ∼ 6), and
the vertical bars show the uncertainty in the normalization. The open circles show
data points converted from the X-ray luminosity function [20] of low luminosity
quasars using the median quasar spectral energy distribution. In each panel the
vertical dashed lines correspond to the Eddington luminosities of BHs bracketing
the observed range of the Mbh–vc relation, and the vertical dotted line corresponds
to a BH in a 1013.5M⊙ galaxy.

rate of galaxy halos, lead to a satisfactory agreement with the rich data set
on quasar evolution over cosmic history.

The cooling time of the heated gas is typically longer than its dynamical
time and so the gas should expand into the galactic halo and escape the
galaxy if its initial temperature exceeds the virial temperature of the galaxy
[394]. The quasar remains active during the dynamical time of the initial
gas reservoir, ∼ 107 years, and fades afterwards due to the dilution of this
reservoir. Accretion is halted as soon as the quasar supplies the galactic gas
with more than its binding energy. The BH growth may resume if the cold
gas reservoir is replenished through a new merger.

Following the early analytic work, extensive numerical simulations by
Springel, Hernquist, & Di Matteo (2005) [350] (see also Di Matteo et al. 2005
[108]) demonstrated that galaxy mergers do produce the observed correla-
tions between black hole mass and spheroid properties when a similar energy
feedback is incorporated. Because of the limited resolution near the galaxy
nucleus, these simulations adopt a simple prescription for the accretion flow
that feeds the black hole. The actual feedback in reality may depend crucially
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on the geometry of this flow and the physical mechanism that couples the
energy or momentum output of the quasar to the surrounding gas.

Fig. 39. Simulation images of a merger of galaxies resulting in quasar activity that
eventually shuts-off the accretion of gas onto the black hole (from Di Matteo et
al. 2005 [108]). The upper (lower) panels show a sequence of snapshots of the gas
distribution during a merger with (without) feedback from a central black hole. The
temperature of the gas is color coded.

Agreement between the predicted and observed correlation function of
quasars (Fig. 41) is obtained only if the BH mass scales with redshift as in
Eq. (113) and the quasar lifetime is of the order of the dynamical time of the
host galactic disk [398],

tdyn = 107 [ξ(z)]−1/2

(

1 + z

3

)−3/2

yr. (114)

This characterizes the timescale it takes low angular momentum gas to set-
tle inwards and feed the black hole from across the galaxy before feedback
sets in and suppresses additional infall. It also characterizes the timescale for
establishing an outflow at the escape speed from the host spheroid.

The inflow of cold gas towards galaxy centers during the growth phase
of the BH would naturally be accompanied by a burst of star formation.
The fraction of gas that is not consumed by stars or ejected by supernovae,
will continue to feed the BH. It is therefore not surprising that quasar and
starburst activities co-exist in Ultra Luminous Infrared Galaxies [356], and
that all quasars show broad metal lines indicating a super-solar metallicity
of the surrounding gas [106]. Applying a similar self-regulation principle to
the stars, leads to the expectation [394, 197] that the ratio between the mass
of the BH and the mass in stars is independent of halo mass (as observed
locally [243]) but increases with redshift as ∝ ξ(z)1/2(1 + z)3/2. A consistent
trend has indeed been inferred in an observed sample of gravitationally-lensed
quasars [305].
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Fig. 40. The comoving density of supermassive BHs per unit BH mass (from [394]).
The grey region shows the estimate based on the observed velocity distribution
function of galaxies in Ref. [336] and the Mbh–vc relation in Eq. (113). The lower
bound corresponds to the lower limit in density for the observed velocity function
while the grey lines show the extrapolation to lower densities. We also show the
mass function computed at z = 1, 3 and 6 from the Press-Schechter[292] halo mass
function and Eq. (113), as well as the mass function at z ∼ 2.35 and z ∼ 3 implied
by the observed density of quasars and a quasar lifetime of order the dynamical time
of the host galactic disk, tdyn (dot-dashed lines).

The upper mass of galaxies may also be regulated by the energy output
from quasar activity. This would account for the fact that cooling flows are
suppressed in present-day X-ray clusters [123, 91, 273], and that massive BHs
and stars in galactic bulges were already formed at z ∼ 2. The quasars discov-
ered by the Sloan Digital Sky Survey (SDSS) at z ∼ 6 mark the early growth of
the most massive BHs and galactic spheroids. The present-day abundance of
galaxies capable of hosting BHs of mass ∼ 109M⊙ (based on Eq. 113) already
existed at z ∼ 6 [225]. At some epoch, the quasar energy output may have
led to the extinction of cold gas in these galaxies and the suppression of fur-
ther star formation in them, leading to an apparent “anti-hierarchical” mode
of galaxy formation where massive spheroids formed early and did not make
new stars at late times. In the course of subsequent merger events, the cores of
the most massive spheroids acquired an envelope of collisionless matter in the
form of already-formed stars or dark matter [225], without the proportional
accretion of cold gas into the central BH. The upper limit on the mass of the
central BH and the mass of the spheroid is caused by the lack of cold gas and
cooling flows in their X-ray halos. In the cores of cooling X-ray clusters, there
is often an active central BH that supplies sufficient energy to compensate for
the cooling of the gas [91, 123, 35]. The primary physical process by which
this energy couples to the gas is still unknown.
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Fig. 41. Predicted correlation function of quasars at various redshifts in comparison
to the 2dF data [101] (from [398]). The dark lines show the correlation function
predictions for quasars of various apparent B-band magnitudes. The 2dF limit is
B ∼ 20.85. The lower right panel shows data from entire 2dF sample in comparison
to the theoretical prediction at the mean quasar redshift of 〈z〉 = 1.5. The B = 20.85
prediction at this redshift is also shown by thick gray lines in the other panels to
guide the eye. The predictions are based on the scaling Mbh ∝ v5

c in Eq. (113).

6.2 Feedback on Large Intergalactic Scales

Aside from affecting their host galaxy, quasars disturb their large-scale cos-
mological environment. Powerful quasar outflows are observed in the form of
radio jets [34] or broad-absorption-line winds [160]. The amount of energy
carried by these outflows is largely unknown, but could be comparable to the
radiative output from the same quasars. Furlanetto & Loeb [139] have calcu-
lated the intergalactic volume filled by such outflows as a function of cosmic
time (see Fig. 42). This volume is likely to contain magnetic fields and metals,
providing a natural source for the observed magnetization of the metal-rich
gas in X-ray clusters [207] and in galaxies [103]. The injection of energy by
quasar outflows may also explain the deficit of Lyα absorption in the vicin-
ity of Lyman-break galaxies [7, 100] and the required pre-heating in X-ray
clusters [54, 91].

Beyond the reach of their outflows, the brightest SDSS quasars at z > 6
are inferred to have ionized exceedingly large regions of gas (tens of comov-
ing Mpc) around them prior to global reionization (see Fig. 43 and Refs.
[381, 400]). Thus, quasars must have suppressed the faint-end of the galaxy
luminosity function in these regions before the same occurred throughout the
Universe. The recombination time is comparable to the Hubble time for the
mean gas density at z ∼ 7 and so ionized regions persist [272] on these large
scales where inhomogeneities are small. The minimum galaxy mass is increased
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Fig. 42. The global influence of magnetized quasar outflows on the intergalactic
medium (from [139]). Upper Panel: Predicted volume filling fraction of magnetized
quasar bubbles F (z), as a function of redshift. Lower Panel: Ratio of normalized
magnetic energy density, ūB/ǫ−1, to the fiducial thermal energy density of the inter-
galactic medium ufid = 3n(z)kTIGM , where TIGM = 104 K, as a function of redshift
(see [139] for more details). In each panel, the solid curves assume that the blast
wave created by quasar ouflows is nearly (80%) adiabatic, and that the minimum
halo mass of galaxies, Mh,min, is determined by atomic cooling before reionization
and by suppression due to galactic infall afterwards (top curve), Mh,min = 109M⊙

(middle curve), and Mh,min = 1010M⊙ (bottom curve). The dashed curve assumes
a fully-radiative blast wave and fixes Mh,min by the thresholds for atomic cooling
and infall suppression. The vertical dotted line indicates the assumed redshift of
complete reionization, zr = 7.

by at least an order of magnitude to a virial temperature of ∼ 105K in these
ionized regions [23]. It would be particularly interesting to examine whether
the faint end (σ⋆ < 30km s−1) of the luminosity function of dwarf galaxies
shows any moduluation on large-scales around rare massive BHs, such as M87.

To find the volume filling fraction of relic regions from z ∼ 6, we consider
a BH of mass Mbh ∼ 3 × 109M⊙. We can estimate the comoving density of
BHs directly from the observed quasar luminosity function and our estimate
of quasar lifetime. At z ∼ 6, quasars powered by Mbh ∼ 3 × 109M⊙ BHs had
a comoving density of ∼ 0.5Gpc−3[394]. However, the Hubble time exceeds
tdyn by a factor of ∼ 2×102 (reflecting the square root of the density contrast
of cores of galaxies relative to the mean density of the Universe), so that the
comoving density of the bubbles created by the z ∼ 6 BHs is ∼ 102Gpc−3 (see
Fig. 40). The density implies that the volume filling fraction of relic z ∼ 6
regions is small, < 10%, and that the nearest BH that had Mbh ∼ 3× 109M⊙

at z ∼ 6 (and could have been detected as an SDSS quasar then) should be
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at a distance dbh ∼
(

4π/3 × 102
)1/3

Gpc ∼ 140Mpc which is almost an order-
of-magnitude larger than the distance of M87, a galaxy known to possess a
BH of this mass [135].

Fig. 43. Quasars serve as probes of the end of reionization. The measured size
of the HII regions around SDSS quasars can be used [396, 251] to demonstrate
that a significant fraction of the intergalactic hydrogen was neutral at z ∼ 6.3
or else the inferred size of the quasar HII regions would have been much larger
than observed (assuming typical quasar lifetimes [248]). Also, quasars can be used
to measure the redshift at which the intergalactic medium started to transmit Lyα
photons[381, 400]. The upper panel illustrates how the line-of-sight towards a quasar
intersects this transition redshift. The resulting Lyα transmission of the intrinsic
quasar spectrum is shown schematically in the lower panel.

What is the most massive BH that can be detected dynamically in a local
galaxy redshift survey? SDSS probes a volume of ∼ 1Gpc3 out to a distance
∼ 30 times that of M87. At the peak of quasar activity at z ∼ 3, the density of
the brightest quasars implies that there should be ∼ 100 BHs with masses of
3×1010M⊙ per Gpc3, the nearest of which will be at a distance dbh ∼ 130Mpc,
or ∼ 7 times the distance to M87. The radius of gravitational influence of the

BH scales as Mbh/v2
c ∝ M

3/5
bh . We find that for the nearest 3 × 109M⊙ and

3× 1010M⊙ BHs, the angular radius of influence should be similar. Thus, the
dynamical signature of ∼ 3 × 1010M⊙ BHs on their stellar host should be
detectable.

6.3 What seeded the growth of the supermassive black holes?

The BHs powering the bright SDSS quasars possess a mass of a few ×109M⊙,
and reside in galaxies with a velocity dispersion of ∼ 500km s−1[24]. A quasar
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radiating at its Eddington limiting luminosity, LE = 1.4×1046 erg s−1(Mbh/108M⊙),
with a radiative efficiency, ǫrad = LE/Ṁc2 would grow exponentially in
mass as a function of time t, Mbh = Mseed exp{t/tE} on a time scale,
tE = 4.1 × 107 yr(ǫrad/0.1). Thus, the required growth time in units of the
Hubble time thubble = 9 × 108 yr[(1 + z)/7]−3/2 is

tgrowth

thubble
= 0.7

( ǫrad
10%

)

(

1 + z

7

)3/2

ln

(

Mbh/109M⊙

Mseed/100M⊙

)

. (115)

The age of the Universe at z ∼ 6 provides just sufficient time to grow an SDSS
BH with Mbh ∼ 109M⊙ out of a stellar mass seed with ǫrad = 10% [175]. The
growth time is shorter for smaller radiative efficiencies, as expected if the seed
originates from the optically-thick collapse of a supermassive star (in which
case Mseed in the logarithmic factor is also larger).

Fig. 44. SPH simulation of the collapse of an early dwarf galaxy with a virial tem-
perature just above the cooling threshold of atomic hydrogen and no H2 (from [63]).
The image shows a snapshot of the gas density distribution at z ≈ 10, indicating
the formation of two compact objects near the center of the galaxy with masses of
2.2 × 106M⊙ and 3.1 × 106M⊙, respectively, and radii < 1 pc. Sub-fragmentation
into lower mass clumps is inhibited as long as molecular hydrogen is dissociated by
a background UV flux. These circumstances lead to the formation of supermassive
stars [220] that inevitably collapse and trigger the birth of supermassive black holes
[220, 309]. The box size is 200 pc.

What was the mass of the initial BH seeds? Were they planted in early
dwarf galaxies through the collapse of massive, metal free (Pop-III) stars (lead-
ing to Mseed of hundreds of solar masses) or through the collapse of even more
massive, i.e. supermassive, stars [220] ? Bromm & Loeb [63] have shown
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through a hydrodynamical simulation (see Fig. 44) that supermassive stars
were likely to form in early galaxies at z ∼ 10 in which the virial temperature
was close to the cooling threshold of atomic hydrogen, ∼ 104K. The gas in
these galaxies condensed into massive ∼ 106M⊙ clumps (the progenitors of
supermassive stars), rather than fragmenting into many small clumps (the
progenitors of stars), as it does in environments that are much hotter than
the cooling threshold. This formation channel requires that a galaxy be close
to its cooling threshold and immersed in a UV background that dissociates
molecular hydrogen in it. These requirements should make this channel suffi-
ciently rare, so as not to overproduce the cosmic mass density of supermassive
BH.

The minimum seed BH mass can be identified observationally through the
detection of gravitational waves from BH binaries with Advanced LIGO [395]
or with LISA [393]. Most of the mHz binary coalescence events originate at
z > 7 if the earliest galaxies included BHs that obey the Mbh–vc relation in
Eq. (113). The number of LISA sources per unit redshift per year should drop
substantially after reionization, when the minimum mass of galaxies increased
due to photo-ionization heating of the intergalactic medium. Studies of the
highest redshift sources among the few hundred detectable events per year,
will provide unique information about the physics and history of BH growth
in galaxies [327].

The early BH progenitors can also be detected as unresolved point sources,
using the future James Webb Space Telescope (JWST). Unfortunately, the
spectrum of metal-free massive and supermassive stars is the same, since their
surface temperature ∼ 105K is independent of mass [59]. Hence, an unresolved
cluster of massive early stars would show the same spectrum as a supermassive
star of the same total mass.

It is difficult to ignore the possible environmental impact of quasars on
anthropic selection. One may wonder whether it is not a coincidence that our
Milky-Way Galaxy has a relatively modest BH mass of only a few million solar
masses in that the energy output from a much more massive (e.g. ∼ 109M⊙)
black hole would have disrupted the evolution of life on our planet. A proper
calculation remains to be done (as in the context of nearby Gamma-Ray Bursts
[316]) in order to demonstrate any such link.

7 Radiative Feedback from the First Sources of Light

7.1 Escape of Ionizing Radiation from Galaxies

The intergalactic ionizing radiation field, a key ingredient in the development
of reionization, is determined by the amount of ionizing radiation escaping
from the host galaxies of stars and quasars. The value of the escape fraction
as a function of redshift and galaxy mass remains a major uncertainty in all
current studies, and could affect the cumulative radiation intensity by orders
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of magnitude at any given redshift. Gas within halos is far denser than the
typical density of the IGM, and in general each halo is itself embedded within
an overdense region, so the transfer of the ionizing radiation must be followed
in the densest regions in the Universe. Reionization simulations are limited in
resolution and often treat the sources of ionizing radiation and their immediate
surroundings as unresolved point sources within the large-scale intergalactic
medium (see, e.g., Gnedin 2000 [152]). The escape fraction is highly sensitive
to the three-dimensional distribution of the UV sources relative to the ge-
ometry of the absorbing gas within the host galaxy (which may allow escape
routes for photons along particular directions but not others).

The escape of ionizing radiation (hν > 13.6eV, λ < 912 Å) from the disks
of present-day galaxies has been studied in recent years in the context of ex-
plaining the extensive diffuse ionized gas layers observed above the disk in
the Milky Way [300] and other galaxies [295, 183]. Theoretical models predict
that of order 3–14% of the ionizing luminosity from O and B stars escapes the
Milky Way disk [111, 110]. A similar escape fraction of fesc = 6% was deter-
mined by Bland-Hawthorn & Maloney (1999) [46] based on Hα measurements
of the Magellanic Stream. From Hopkins Ultraviolet Telescope observations of
four nearby starburst galaxies (Leitherer et al. 1995 [217]; Hurwitz, Jelinsky,
& Dixon 1997 [185]), the escape fraction was estimated to be in the range
3%< fesc < 57%. If similar escape fractions characterize high redshift galax-
ies, then stars could have provided a major fraction of the background radia-
tion that reionized the IGM [236, 238]. However, the escape fraction from
high-redshift galaxies, which formed when the Universe was much denser
(ρ ∝ (1 + z)3), may be significantly lower than that predicted by models
ment to describe present-day galaxies. Current reionization calculations as-
sume that galaxies are isotropic point sources of ionizing radiation and adopt
escape fractions in the range 5% < fesc < 60% [152].

Clumping is known to have a significant effect on the penetration and
escape of radiation from an inhomogeneous medium [49, 385, 269, 173, 42].
The inclusion of clumpiness introduces several unknown parameters into the
calculation, such as the number and overdensity of the clumps, and the spa-
tial correlation between the clumps and the ionizing sources. An additional
complication may arise from hydrodynamic feedback, whereby part of the gas
mass is expelled from the disk by stellar winds and supernovae (§8).

Wood & Loeb (2000) [387] used a three-dimensional radiation transfer
code to calculate the steady-state escape fraction of ionizing photons from
disk galaxies as a function of redshift and galaxy mass. The gaseous disks were
assumed to be isothermal, with a sound speed cs ∼ 10 km s−1, and radially
exponential, with a scale-length based on the characteristic spin parameter
and virial radius of their host halos. The corresponding temperature of ∼ 104

K is typical for a gas which is continuousely heated by photo-ionization from
stars. The sources of radiation were taken to be either stars embedded in the
disk, or a central quasar. For stellar sources, the predicted increase in the
disk density with redshift resulted in a strong decline of the escape fraction



First Light 83

with increasing redshift. The situation is different for a central quasar. Due
to its higher luminosity and central location, the quasar tends to produce an
ionization channel in the surrounding disk through which much of its ionizing
radiation escapes from the host. In a steady state, only recombinations in this
ionization channel must be balanced by ionizations, while for stars there are
many ionization channels produced by individual star-forming regions and the
total recombination rate in these channels is very high. Escape fractions > 10%
were achieved for stars at z ∼ 10 only if ∼ 90% of the gas was expelled from
the disks or if dense clumps removed the gas from the vast majority (> 80%)
of the disk volume (see Fig. 45). This analysis applies only to halos with virial
temperatures > 104 K. Ricotti & Shull (2000) [302] reached similar conclusions
but for a quasi-spherical configuration of stars and gas. They demonstrated
that the escape fraction is substantially higher in low-mass halos with a virial
temperature < 104 K. However, the formation of stars in such halos depends
on their uncertain ability to cool via the efficient production of molecular
hydrogen.

Fig. 45. Escape fractions of stellar ionizing photons from a gaseous disk embedded
within a 1010M⊙ halo which have formed at z = 10 (from Wood & Loeb 2000
[387]). The curves show three different cases of clumpiness within the disk. The
volume filling factor refers to either the ionizing emissivity, the gas clumps, or both,
depending on the case. The escape fraction is substantial (> 1%) only if the gas
distribution is highly clumped.

The main uncertainty in the above predictions involves the distribution
of the gas inside the host galaxy, as the gas is exposed to the radiation re-
leased by stars and the mechanical energy deposited by supernovae. Given
the fundamental role played by the escape fraction, it is desirable to calibrate
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its value observationally. Steidel, Pettini, & Adelberger [352] reported a de-
tection of significant Lyman continuum flux in the composite spectrum of 29
Lyman break galaxies (LBG) with redshifts in the range z = 3.40 ± 0.09.
They co-added the spectra of these galaxies in order to be able to measure
the low flux. Another difficulty in the measurement comes from the need to
separate the Lyman-limit break caused by the interstellar medium from that
already produced in the stellar atmospheres. After correcting for intergalac-
tic absorption, Steidel et al. [352] inferred a ratio between the emergent flux
density at 1500Å and 900Å (rest frame) of 4.6 ± 1.0. Taking into account
the fact that the stellar spectrum should already have an intrinsic Lyman
discontinuity of a factor of ∼ 3–5, but that only ∼ 15–20% of the 1500Å pho-
tons escape from typical LBGs without being absorbed by dust (Pettini et
al. 1998 [290]; Adelberger et al. 2000 [6]), the inferred 900Å escape fraction
is fesc ∼ 10–20%. Although the galaxies in this sample were drawn from the
bluest quartile of the LBG spectral energy distributions, the measurement im-
plies that this quartile may itself dominate the hydrogen-ionizing background
relative to quasars at z ∼ 3.

7.2 Propagation of Ionization Fronts in the IGM

The radiation output from the first stars ionizes hydrogen in a growing volume,
eventually encompassing almost the entire IGM within a single H II bubble.
In the early stages of this process, each galaxy produces a distinct H II region,
and only when the overall H II filling factor becomes significant do neighboring
bubbles begin to overlap in large numbers, ushering in the “overlap phase” of
reionization. Thus, the first goal of a model of reionization is to describe the
initial stage, when each source produces an isolated expanding H II region.

We assume a spherical ionized volume V , separated from the surrounding
neutral gas by a sharp ionization front. Indeed, in the case of a stellar ioniz-
ing spectrum, most ionizing photons are just above the hydrogen ionization
threshold of 13.6 eV, where the absorption cross-section is high and a very
thin layer of neutral hydrogen is sufficient to absorb all the ionizing photons.
On the other hand, an ionizing source such as a quasar produces significant
numbers of higher energy photons and results in a thicker transition region.

In the absence of recombinations, each hydrogen atom in the IGM would
only have to be ionized once, and the ionized proper volume Vp would simply
be determined by

n̄HVp = Nγ , (116)

where n̄H is the mean number density of hydrogen and Nγ is the total number
of ionizing photons produced by the source. However, the increased density
of the IGM at high redshift implies that recombinations cannot be neglected.
Indeed, in the case of a steady ionizing source (and neglecting the cosmological
expansion), a steady-state volume would be reached corresponding to the
Strömgren sphere, with recombinations balancing ionizations:
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αBn̄2
HVp =

dNγ

dt
, (117)

where the recombination rate depends on the square of the density and on
the case B recombination coefficient αB = 2.6 × 10−13 cm3 s−1 for hydrogen
at T = 104 K. The exact evolution for an expanding H II region, including
a non-steady ionizing source, recombinations, and cosmological expansion, is
given by (Shapiro & Giroux 1987 [329])

n̄H

(

dVp

dt
− 3HVp

)

=
dNγ

dt
− αB

〈

n2
H

〉

Vp . (118)

In this equation, the mean density n̄H varies with time as 1/a3(t). A criti-
cal physical ingredient is the dependence of recombination on the square of
the density. This means that if the IGM is not uniform, but instead the gas
which is being ionized is mostly distributed in high-density clumps, then the
recombination time is very short. This is often dealt with by introducing a
volume-averaged clumping factor C (in general time-dependent), defined by8

C =
〈

n2
H

〉

/n̄2
H . (119)

If the ionized volume is large compared to the typical scale of clumping,
so that many clumps are averaged over, then equation (118) can be solved
by supplementing it with equation (119) and specifying C. Switching to the
comoving volume V , the resulting equation is

dV

dt
=

1

n̄0
H

dNγ

dt
− αB

C

a3
n̄0

HV , (120)

where the present number density of hydrogen is

n̄0
H = 1.88 × 10−7

(

Ωbh
2

0.022

)

cm−3 . (121)

This number density is lower than the total number density of baryons n̄0
b by

a factor of ∼ 0.76, corresponding to the primordial mass fraction of hydrogen.
The solution for V (t) (generalized from Shapiro & Giroux 1987 [329]) around
a source which turns on at t = ti is

V (t) =

∫ t

ti

1

n̄0
H

dNγ

dt′
eF (t′,t)dt′ , (122)

where

F (t′, t) = −αBn̄0
H

∫ t

t′

C(t′′)

a3(t′′)
dt′′ . (123)

8 The recombination rate depends on the number density of electrons, and in using
equation (119) we are neglecting the small contribution caused by partially or
fully ionized helium.
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At high redshift (when (1 + z) ≫ |Ωm
−1 − 1|), the scale factor varies as

a(t) ≃
(

3

2

√

ΩmH0t

)2/3

, (124)

and with the additional assumption of a constant C the function F simplifies
as follows. Defining

f(t) = a(t)−3/2 , (125)

we derive

F (t′, t) = −2

3

αBn̄0
H√

ΩmH0

C [f(t′) − f(t)] = −0.262 [f(t′) − f(t)] , (126)

where the last equality assumes C = 10 and our standard choice of cosmo-
logical parameters: Ωm = 0.3, ΩΛ = 0.7, and Ωb = 0.045. Although this
expression for F (t′, t) is in general an accurate approximation at high red-
shift, in the particular case of the ΛCDM model (where Ωm +ΩΛ = 1) we get
the exact result by replacing equation (125) with

f(t) =

√

1

a3
+

1 − Ωm

Ωm
. (127)

The size of the resulting H II region depends on the halo which produces
it. Consider a halo of total mass M and baryon fraction Ωb/Ωm. To derive
a rough estimate, we assume that baryons are incorporated into stars with
an efficiency of fstar = 10%, and that the escape fraction for the resulting
ionizing radiation is also fesc = 10%. If the stellar IMF is similar to the one
measured locally [315], then Nγ ≈ 4000 ionizing photons are produced per
baryon in stars (for a metallicity equal to 1/20 of the solar value). We define
a parameter which gives the overall number of ionizations per baryon,

Nion ≡ Nγ fstar fesc . (128)

If we neglect recombinations then we obtain the maximum comoving radius
of the region which the halo of mass M can ionize,

rmax =

(

3

4π

Nγ

n̄0
H

)1/3

=

(

3

4π

Nion

n̄0
H

Ωb

Ωm

M

mp

)1/3

= 680 kpc

(

Nion

40

M

108M⊙

)1/3

,

(129)
for our standard set of parameters. The actual radius never reaches this size if
the recombination time is shorter than the lifetime of the ionizing source. For
an instantaneous starburst with the Scalo (1998) [315] IMF, the production
rate of ionizing photons can be approximated as

dNγ

dt
=

α − 1

α

Nγ

ts
×
{

1 if t < ts,
(

t
ts

)−α

otherwise,
(130)
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where Nγ = 4000, α = 4.5, and the most massive stars fade away with the
characteristic timescale ts = 3×106 yr. In figure 46 we show the time evolution
of the volume ionized by such a source, with the volume shown in units of
the maximum volume Vmax which corresponds to rmax in equation (129). We
consider a source turning on at z = 10 (solid curves) or z = 15 (dashed curves),
with three cases for each: no recombinations, C = 1, and C = 10, in order
from top to bottom (Note that the result is independent of redshift in the case
of no recombinations). When recombinations are included, the volume rises
and reaches close to Vmax before dropping after the source turns off. At large t
recombinations stop due to the dropping density, and the volume approaches
a constant value (although V ≪ Vmax at large t if C = 10).

Fig. 46. Expanding H II region around an isolated ionizing source. The comov-
ing ionized volume V is expressed in units of the maximum possible volume,
Vmax = 4πr3

max/3 [with rmax given in equation (129)], and the time is measured
after an instantaneous starburst which produces ionizing photons according to equa-
tion (130). We consider a source turning on at z = 10 (solid curves) or z = 15 (dashed
curves), with three cases for each: no recombinations, C = 1, and C = 10, in order
from top to bottom. The no-recombination curve is identical for the different source
redshifts.

We obtain a similar result for the size of the H II region around a galaxy if
we consider a mini-quasar rather than stars. For the typical quasar spectrum
(Elvis et al. 1994 [122]), roughly 11,000 ionizing photons are produced per
baryon incorporated into the black hole, assuming a radiative efficiency of
∼ 6%. The efficiency of incorporating the baryons in a galaxy into a central
black hole is low (< 0.6% in the local Universe, e.g. Magorrian et al. 1998
[243]), but the escape fraction for quasars is likely to be close to unity, i.e.,
an order of magnitude higher than for stars (see previous sub-section). Thus,
for every baryon in galaxies, up to ∼ 65 ionizing photons may be produced
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by a central black hole and ∼ 40 by stars, although both of these numbers
for Nion are highly uncertain. These numbers suggest that in either case the
typical size of H II regions before reionization may be < 1 Mpc or ∼ 10 Mpc,
depending on whether 108M⊙ halos or 1012M⊙ halos dominate.

The ionization front around a bright transient source like a quasar expands
at early times at nearly the speed of light. This occurs when the HII region
is sufficiently small so that the production rate of ionizing photons by the
central source exceeds their consumption rate by hydrogen atoms within this
volume. It is straightforward to do the accounting for these rates (including
recombinations) taking the light propagation delay into account. This was
done by Wyithe & Loeb [396] [see also White et al. (2003) [381]] who derived
the general equation for the relativistic expansion of the comoving radius
[r = (1 + z)rp] of the quasar H II region in an IGM with a neutral filling
fraction xHI (fixed by other ionizing sources) as,

dr

dt
= c(1 + z)

[

Ṅγ − αBCxHI

(

n̄0
H

)2
(1 + z)

3 ( 4π
3 r3

)

Ṅγ + 4πr2 (1 + z) cxHIn̄0
H

]

, (131)

where c is the speed of light, C is the clumping factor, αB = 2.6×10−13cm3s−1

is the case-B recombination coefficient at the characteristic temperature of
104K, and Ṅγ is the rate of ionizing photons crossing a shell at the radius

of the HII region at time t. Indeed, for Ṅγ → ∞ the propagation speed of
the proper radius of the HII region rp = r/(1 + z) approaches the speed of
light in the above expression, (drp/dt) → c. The actual size of the HII region
along the line-of-sight to a quasar can be inferred from the extent of the
spectral gap between the quasar’s rest-frame Lyα wavelength and the start
of Lyα absorption by the IGM in the observed spectrum. Existing data from
the SDSS quasars [396, 251, 401] provide typical values of rp ∼ 5Mpc and
indicate for plausible choices of the quasar lifetimes that xHI > 0.1 at z > 6.
These ionized bubbles could be imaged directly by future 21cm maps of the
regions around the highest-redshift quasars [367, 397, 390].

The profile of the Lyα emission line of galaxies has also been suggested as
a probe of the ionization state of the IGM [223, 314, 81, 177, 240, 227, 246].
If the IGM is neutral, then the damping wing of the Gunn-Peterson trough in
equation (108) is modified since Lyα absorption starts only from the near edge
of the ionized region along the line-of-sight to the source [81, 240]. Rhoads
& Malhotra [246] showed that the observed abundance of galaxies with Lyα
emission at z ∼ 6.5 indicates that a substantial fraction (tens of percent)
of the IGM must be ionized in order to allow transmission of the observed
Lyα photons. However, if these galaxies reside in groups, then galaxies with
peculiar velocities away from the observer will preferentially Doppler-shift the
emitted Lyα photons to the red wing of the Lyα resonance and reduce the
depression of the line profile [227, 85]. Additional uncertainties in the intrinsic
line profile based on the geometry and the stellar or gaseous contents of the
source galaxy [227, 314], as well as the clustering of galaxies which ionize
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their immediate environment in groups [400, 145], limits this method from
reaching robust conclusions. Imaging of the expected halos of scattered Lyα
radiation around galaxies embedded in a neutral IGM [223, 307] provide a
more definitive test of the neutrality of the IGM, but is more challenging
observationally.

7.3 Reionization of Hydrogen

In this section we summarize recent progress, both analytic and numerical,
made toward elucidating the basic physics of reionization and the way in which
the characteristics of reionization depend on the nature of the ionizing sources
and on other input parameters of cosmological models.

The process of the reionization of hydrogen involves several distinct stages.
The initial, “pre-overlap” stage (using the terminology of Gnedin [152]) con-
sists of individual ionizing sources turning on and ionizing their surroundings.
The first galaxies form in the most massive halos at high redshift, and these
halos are biased and are preferentially located in the highest-density regions.
Thus the ionizing photons which escape from the galaxy itself (see §7.1) must
then make their way through the surrounding high-density regions, which are
characterized by a high recombination rate. Once they emerge, the ioniza-
tion fronts propagate more easily into the low-density voids, leaving behind
pockets of neutral, high-density gas. During this period the IGM is a two-
phase medium characterized by highly ionized regions separated from neutral
regions by ionization fronts. Furthermore, the ionizing intensity is very inho-
mogeneous even within the ionized regions, with the intensity determined by
the distance from the nearest source and by the ionizing luminosity of this
source.

The central, relatively rapid “overlap” phase of reionization begins when
neighboring H II regions begin to overlap. Whenever two ionized bubbles
are joined, each point inside their common boundary becomes exposed to
ionizing photons from both sources. Therefore, the ionizing intensity inside
H II regions rises rapidly, allowing those regions to expand into high-density
gas which had previously recombined fast enough to remain neutral when
the ionizing intensity had been low. Since each bubble coalescence accelerates
the process of reionization, the overlap phase has the character of a phase
transition and is expected to occur rapidly, over less than a Hubble time at
the overlap redshift. By the end of this stage most regions in the IGM are
able to see several unobscured sources, and therefore the ionizing intensity
is much higher than before overlap and it is also much more homogeneous.
An additional ingredient in the rapid overlap phase results from the fact that
hierarchical structure formation models predict a galaxy formation rate that
rises rapidly with time at the relevant redshift range. This process leads to
a state in which the low-density IGM has been highly ionized and ionizing
radiation reaches everywhere except for gas located inside self-shielded, high-
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density clouds. This marks the end of the overlap phase, and this important
landmark is most often referred to as the ’moment of reionization’.

Some neutral gas does, however, remain in high-density structures which
correspond to Lyman Limit systems and damped Lyα systems seen in ab-
sorption at lower redshifts. The high-density regions are gradually ionized as
galaxy formation proceeds, and the mean ionizing intensity also grows with
time. The ionizing intensity continues to grow and to become more uniform
as an increasing number of ionizing sources is visible to every point in the
IGM. This “post-overlap” phase continues indefinitely, since collapsed objects
retain neutral gas even in the present Universe. The IGM does, however, reach
another milestone at z ∼ 1.6, the breakthrough redshift [239]. Below this red-
shift, all ionizing sources are visible to each other, while above this redshift
absorption by the Lyα forest implies that only sources in a small redshift
range are visible to a typical point in the IGM.

Semi-analytic models of the pre-overlap stage focus on the evolution of
the H II filling factor, i.e., the fraction of the volume of the Universe which is
filled by H II regions. We distinguish between the naive filling factor FH II and
the actual filling factor or porosity QH II. The naive filling factor equals the
number density of bubbles times the average volume of each, and it may exceed
unity since when bubbles begin to overlap the overlapping volume is counted
multiple times. However, as explained below, in the case of reionization the
linearity of the physics means that FH II is a very good approximation to
QH II up to the end of the overlap phase of reionization.

The model of individual H II regions presented in the previous section can
be used to understand the development of the total filling factor. Starting with
equation (120), if we assume a common clumping factor C for all H II regions
then we can sum each term of the equation over all bubbles in a given large
volume of the Universe, and then divide by this volume. Then V is replaced
by the filling factor and Nγ by the total number of ionizing photons produced
up to some time t, per unit volume. The latter quantity equals the mean
number of ionizing photons per baryon times the mean density of baryons n̄b.
Following the arguments leading to equation (129), we find that if we include
only stars then

n̄γ

n̄b
= NionFcol , (132)

where the collapse fraction Fcol is the fraction of all the baryons in the Uni-
verse which are in galaxies, i.e., the fraction of gas which settles into halos
and cools efficiently inside them. In writing equation (132) we are assuming
instantaneous production of photons, i.e., that the timescale for the forma-
tion and evolution of the massive stars in a galaxy is short compared to the
Hubble time at the formation redshift of the galaxy. In a model based on
equation (120), the near-equality between FH II and QH II results from the
linearity of this equation. First, the total number of ionizations equals the
total number of ionizing photons produced by stars, i.e., all ionizing photons
contribute regardless of the spatial distribution of sources; and second, the to-
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tal recombination rate is proportional to the total ionized volume, regardless
of its topology. Thus, even if two or more bubbles overlap the model remains
an accurate approximation for QH II (at least until QH II becomes nearly equal
to 1). Note, however, that there still are a number of important simplifications
in the model, including the assumption of a homogeneous (though possibly
time-dependent) clumping factor, and the neglect of feedback whereby the
formation of one galaxy may suppress further galaxy formation in neighbor-
ing regions. These complications are discussed in detail below and in §7.5 and
§8.

Under these assumptions we convert equation (120), which describes indi-
vidual H II regions, to an equation which statistically describes the transition
from a neutral Universe to a fully ionized one (compare to Madau et al. 1999
[239] and Haiman & Loeb 1997 [171]):

dQH II

dt
=

Nion

0.76

dFcol

dt
− αB

C

a3
n̄0

HQH II , (133)

where we assumed a primordial mass fraction of hydrogen of 0.76. The solution
(in analogy with equation (122)) is

QH II(t) =

∫ t

0

Nion

0.76

dFcol

dt′
eF (t′,t)dt′ , (134)

where F (t′, t) is determined by equations (123)–( 127).
A simple estimate of the collapse fraction at high redshift is the mass

fraction (given by equation (91) in the Press-Schechter model) in halos above
the cooling threshold, which is the minimum mass of halos in which gas can
cool efficiently. Assuming that only atomic cooling is effective during the red-
shift range of reionization, the minimum mass corresponds roughly to a halo
of virial temperature Tvir = 104 K, which can be converted to a mass using
equation (86). With this prescription we derive (for Nion = 40) the reioniza-
tion history shown in Fig. 47 for the case of a constant clumping factor C.
The solid curves show QH II as a function of redshift for a clumping factor
C = 0 (no recombinations), C = 1, C = 10, and C = 30, in order from
left to right. Note that if C ∼ 1 then recombinations are unimportant, but if
C > 10 then recombinations significantly delay the reionization redshift (for
a fixed star-formation history). The dashed curve shows the collapse fraction
Fcol in this model. For comparison, the vertical dotted line shows the z = 5.8
observational lower limit (Fan et al. 2000 [124]) on the reionization redshift.

Clearly, star-forming galaxies in CDM hierarchical models are capable of
ionizing the Universe at z ∼ 6–15 with reasonable parameter choices. This
has been shown by a large number of theoretical, semi-analytic calculations
[138, 330, 171, 373, 89, 92, 392, 83, 371] as well as numerical simulations
[79, 148, 152, 2, 296, 95, 342, 204, 186]. Similarly, if a small fraction (< 1%)
of the gas in each galaxy accretes onto a central black hole, then the resulting
mini-quasars are also able to reionize the Universe, as has also been shown
using semi-analytic models [138, 172, 373, 392].
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Fig. 47. Semi-analytic calculation of the reionization of the IGM (for Nion = 40),
showing the redshift evolution of the filling factor QH II. Solid curves show QH II

for a clumping factor C = 0 (no recombinations), C = 1, C = 10, and C = 30,
in order from left to right. The dashed curve shows the collapse fraction Fcol, and
the vertical dotted line shows the z = 5.8 observational lower limit (Fan et al. 2000
[124]) on the reionization redshift.

Although many models yield a reionization redshift around 7–12, the exact
value depends on a number of uncertain parameters affecting both the source
term and the recombination term in equation (133). The source parameters
include the formation efficiency of stars and quasars and the escape fraction
of ionizing photons produced by these sources. The formation efficiency of low
mass galaxies may also be reduced by feedback from galactic outflows. These
parameters affecting the sources are discussed elsewhere in this review (see
§7.1, and 8). Even when the clumping is inhomogeneous, the recombination
term in equation (133) is generally valid if C is defined as in equation (119),
where we take a global volume average of the square of the density inside
ionized regions (since neutral regions do not contribute to the recombination
rate). The resulting mean clumping factor depends on the density and clus-
tering of sources, and on the distribution and topology of density fluctuations
in the IGM. Furthermore, the source halos should tend to form in overdense
regions, and the clumping factor is affected by this cross-correlation between
the sources and the IGM density.

Miralda-Escudé, Haehnelt, & Rees (2000) [256] presented a simple model
for the distribution of density fluctuations, and more generally they discussed
the implications of inhomogeneous clumping during reionization. They noted
that as ionized regions grow, they more easily extend into low-density regions,
and they tend to leave behind high-density concentrations, with these neutral
islands being ionized only at a later stage. They therefore argued that, since
at high-redshift the collapse fraction is low, most of the high-density regions,
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which would dominate the clumping factor if they were ionized, will in fact
remain neutral and occupy only a tiny fraction of the total volume. Thus, the
development of reionization through the end of the overlap phase should occur
almost exclusively in the low-density IGM, and the effective clumping factor
during this time should be ∼ 1, making recombinations relatively unimpor-
tant (see Fig. 47). Only in the post-reionization phase, Miralda-Escudé et al.
(2000) [256] argued, do the high density clouds and filaments become gradu-
ally ionized as the mean ionizing intensity further increases.

The complexity of the process of reionization is illustrated by the numerical
simulation of Gnedin [152] of stellar reionization (in ΛCDM with Ωm = 0.3).
This simulation uses a formulation of radiative transfer which relies on several
rough approximations; although it does not include the effect of shadowing
behind optically-thick clumps, it does include for each point in the IGM the
effects of an estimated local optical depth around that point, plus a local
optical depth around each ionizing source. This simulation helps to understand
the advantages of the various theoretical approaches, while pointing to the
complications which are not included in the simple models. Figures 48 and
49, taken from Figure 3 in [152], show the state of the simulated Universe
just before and just after the overlap phase, respectively. They show a thin
(15 h−1 comoving kpc) slice through the box, which is 4 h−1 Mpc on a side,
achieves a spatial resolution of 1h−1 kpc, and uses 1283 each of dark matter
particles and baryonic particles (with each baryonic particle having a mass
of 5 × 105M⊙). The figures show the redshift evolution of the mean ionizing
intensity J21 (upper right panel), and visually the logarithm of the neutral
hydrogen fraction (upper left panel), the gas density (lower left panel), and the
gas temperature (lower right panel). Note the obvious features resulting from
the periodic boundary conditions assumed in the simulation. Also note that
the intensity J21 is defined as the intensity at the Lyman limit, expressed
in units of 10−21 erg cm−2 s−1 sr−1Hz−1. For a given source emission, the
intensity inside H II regions depends on absorption and radiative transfer
through the IGM (e.g., Haardt & Madau 1996 [166]; Abel & Haehnelt 1999
[1])

Figure 48 shows the two-phase IGM at z = 7.7, with ionized bubbles em-
anating from one main concentration of sources (located at the right edge of
the image, vertically near the center; note the periodic boundary conditions).
The bubbles are shown expanding into low density regions and beginning to
overlap at the center of the image. The topology of ionized regions is clearly
complex: While the ionized regions are analogous to islands in an ocean of
neutral hydrogen, the islands themselves contain small lakes of dense neutral
gas. One aspect which has not been included in theoretical models of clump-
ing is clear from the figure. The sources themselves are located in the highest
density regions (these being the sites where the earliest galaxies form) and
must therefore ionize the gas in their immediate vicinity before the radiation
can escape into the low density IGM. For this reason, the effective clump-
ing factor is of order 100 in the simulation and also, by the overlap redshift,
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Fig. 48. Visualization at z = 7.7 of a numerical simulation of reionization, adopted
from Figure 3c of [152]. The panels display the logarithm of the neutral hydrogen
fraction (upper left), the gas density (lower left), and the gas temperature (lower
right). Also shown is the redshift evolution of the logarithm of the mean ionizing
intensity (upper right). Note the periodic boundary conditions.

Fig. 49. Visualization at z = 6.7 of a numerical simulation of reionization, adopted
from Figure 3e of [152]. The panels display the logarithm of the neutral hydrogen
fraction (upper left), the gas density (lower left), and the gas temperature (lower
right). Also shown is the redshift evolution of the logarithm of the mean ionizing
intensity (upper right). Note the periodic boundary conditions.
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roughly ten ionizing photons have been produced per baryon. Figure 49 shows
that by z = 6.7 the low density regions have all become highly ionized along
with a rapid increase in the ionizing intensity. The only neutral islands left
are the highest density regions (compare the two panels on the left). However,
we emphasize that the quantitative results of this simulation must be consid-
ered preliminary, since the effects of increased resolution and a more accurate
treatment of radiative transfer are yet to be explored. Methods are being de-
veloped for incorporating a more complete treatment of radiative transfer into
three dimensional cosmological simulations (e.g., [2, 296, 95, 342, 204, 186]).

Gnedin, Ferrara, & Zweibel (2000) [151] investigated an additional effect
of reionization. They showed that the Biermann battery in cosmological ion-
ization fronts inevitably generates coherent magnetic fields of an amplitude
∼ 10−19 Gauss. These fields form as a result of the breakout of the ionization
fronts from galaxies and their propagation through the H I filaments in the
IGM. Although the fields are too small to directly affect galaxy formation,
they could be the seeds for the magnetic fields observed in galaxies and X-ray
clusters today.

If quasars contribute substantially to the ionizing intensity during reion-
ization then several aspects of reionization are modified compared to the case
of pure stellar reionization. First, the ionizing radiation emanates from a sin-
gle, bright point-source inside each host galaxy, and can establish an escape
route (H II funnel) more easily than in the case of stars which are smoothly
distributed throughout the galaxy (§7.1). Second, the hard photons produced
by a quasar penetrate deeper into the surrounding neutral gas, yielding a
thicker ionization front. Finally, the quasar X-rays catalyze the formation of
H2 molecules and allow stars to keep forming in very small halos.

Oh (1999) [270] showed that star-forming regions may also produce signif-
icant X-rays at high redshift. The emission is due to inverse Compton scat-
tering of CMB photons off relativistic electrons in the ejecta, as well as ther-
mal emission by the hot supernova remnant. The spectrum expected from
this process is even harder than for typical quasars, and the hard photons
photoionize the IGM efficiently by repeated secondary ionizations. The radia-
tion, characterized by roughly equal energy per logarithmic frequency interval,
would produce a uniform ionizing intensity and lead to gradual ionization and
heating of the entire IGM. Thus, if this source of emission is indeed effective
at high redshift, it may have a crucial impact in changing the topology of
reionization. Even if stars dominate the emission, the hardness of the ionizing
spectrum depends on the initial mass function. At high redshift it may be
biased toward massive, efficiently ionizing stars, but this remains very much
uncertain.

Semi-analytic as well as numerical models of reionization depend on an
extrapolation of hierarchical models to higher redshifts and lower-mass halos
than the regime where the models have been compared to observations (see
e.g. [392, 83, 371]). These models have the advantage that they are based on
the current CDM paradigm which is supported by a variety of observations
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of large-scale structure, galaxy clustering, and the CMB. The disadvantage is
that the properties of high-redshift galaxies are derived from those of their
host halos by prescriptions which are based on low redshift observations, and
these prescriptions will only be tested once abundant data is available on
galaxies which formed during the reionization era (see [392] for the sensitivity
of the results to model parameters). An alternative approach to analyzing the
possible ionizing sources which brought about reionization is to extrapolate
from the observed populations of galaxies and quasars at currently accessible
redshifts. This has been attempted, e.g., by Madau et al. (1999) [239] and
Miralda-Escudé et al. (2000) [256]. The general conclusion is that a high-
redshift source population similar to the one observed at z = 3–4 would pro-
duce roughly the needed ionizing intensity for reionization. However, Dijkstra,
Haiman, & Loeb (2004) [107] constrained the role of quasars in reionizing the
Universe based on the unresolved flux of the X-ray background. At any event,
a precise conclusion remains elusive because of the same kinds of uncertain-
ties as those found in the models based on CDM: The typical escape fraction,
and the faint end of the luminosity function, are both not well determined
even at z = 3–4, and in addition the clumping factor at high redshift must be
known in order to determine the importance of recombinations. Future direct
observations of the source population at redshifts approaching reionization
may help resolve some of these questions.

7.4 Photo-evaporation of Gaseous Halos After Reionization

The end of the reionization phase transition resulted in the emergence of an
intense UV background that filled the Universe and heated the IGM to tem-
peratures of ∼ 1–2×104K (see the previous section). After ionizing the rarefied
IGM in the voids and filaments on large scales, the cosmic UV background
penetrated the denser regions associated with the virialized gaseous halos of
the first generation of objects. A major fraction of the collapsed gas had been
incorporated by that time into halos with a virial temperature < 104K, where
the lack of atomic cooling prevented the formation of galactic disks and stars
or quasars. Photoionization heating by the cosmic UV background could then
evaporate much of this gas back into the IGM. The photo-evaporating halos,
as well as those halos which did retain their gas, may have had a number of
important consequences just after reionization as well as at lower redshifts.

In this section we focus on the process by which gas that had already
settled into virialized halos by the time of reionization was evaporated back
into the IGM due to the cosmic UV background. This process was inves-
tigated by Barkana & Loeb (1999) [22] using semi-analytic methods and
idealized numerical calculations. They first considered an isolated spherical,
centrally-concentrated dark matter halo containing gas. Since most of the
photo-evaporation occurs at the end of overlap, when the ionizing intensity
builds up almost instantaneously, a sudden illumination by an external ion-
izing background may be assumed. Self-shielding of the gas implies that the
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halo interior sees a reduced intensity and a harder spectrum, since the outer
gas layers preferentially block photons with energies just above the Lyman
limit. It is useful to parameterize the external radiation field by a specific
intensity per unit frequency, ν,

Jν = 10−21 J21

(

ν

νL

)−α

erg cm−2 s−1 sr−1Hz−1 , (135)

where νL is the Lyman limit frequency, and J21 is the intensity at νL ex-
pressed in units of 10−21 erg cm−2 s−1 sr−1Hz−1. The intensity is normalized
to an expected post–reionization value of around unity for the ratio of ioniz-
ing photon density to the baryon density. Different power laws can be used to
represent either quasar spectra (α ∼ 1.8) or stellar spectra (α ∼ 5).

Once the gas is heated throughout the halo, some fraction of it acquires
a sufficiently high temperature that it becomes unbound. This gas expands
due to the resulting pressure gradient and eventually evaporates back into the
IGM. The pressure gradient force (per unit volume) k∇(Tρ/µmp) competes
with the gravitational force of ρ GM/r2. Due to the density gradient, the ratio
between the pressure force and the gravitational force is roughly equal to the
ratio between the thermal energy ∼ kT and the gravitational binding energy
∼ µmpGM/r (which is ∼ kTvir at the virial radius rvir) per particle. Thus,
if the kinetic energy exceeds the potential energy (or roughly if T > Tvir),
the repulsive pressure gradient force exceeds the attractive gravitational force
and expels the gas on a dynamical time (or faster for halos with T ≫ Tvir).

The left panel of Figure 50 (adopted from Fig. 3 of Barkana & Loeb 1999
[22]) shows the fraction of gas within the virial radius which becomes unbound
after reionization, as a function of the total halo circular velocity, with halo
masses at z = 8 indicated at the top. The two pairs of curves correspond to
spectral index α = 5 (solid) or α = 1.8 (dashed). In each pair, a calculation
which assumes an optically-thin halo leads to the upper curve, but including
radiative transfer and self-shielding modifies the result to the one shown by
the lower curve. In each case self-shielding lowers the unbound fraction, but
it mostly affects only a neutral core containing ∼ 30% of the gas. Since high
energy photons above the Lyman limit penetrate deep into the halo and heat
the gas efficiently, a flattening of the spectral slope from α = 5 to α = 1.8 raises
the unbound gas fraction. This figure is essentially independent of redshift if
plotted in terms of circular velocity, but the conversion to a corresponding
mass does vary with redshift. The characteristic circular velocity where most
of the gas is lost is ∼ 10–15 km s−1, but clearly the effect of photo-evaporation
is gradual, going from total gas removal down to no effect over a range of a
factor of ∼ 100 in halo mass.

Given the values of the unbound gas fraction in halos of different masses,
the Press-Schechter mass function (§4.1) can be used to calculate the total
fraction of the IGM which goes through the process of accreting onto a halo
and then being recycled into the IGM at reionization. The low-mass cutoff
in this sum over halos is given by the lowest mass halo in which gas has
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Fig. 50. Effect of photo-evaporation on individual halos and on the overall halo
population. The left panel shows the unbound gas fraction (within the virial radius)
versus total halo velocity dispersion or mass, adopted from Figure 3 of Barkana
& Loeb (1999) [22]. The two pairs of curves correspond to spectral index α = 5
(solid) or α = 1.8 (dashed), in each case at z = 8. In each pair, assuming an
optically-thin halo leads to the upper curve, while the lower curve shows the result
of including radiative transfer and self shielding. The right panel shows the total
fraction of gas in the Universe which evaporates from halos at reionization, versus
the reionization redshift, adopted from Figure 7 of Barkana & Loeb (1999) [22]. The
solid line assumes a spectral index α = 1.8, and the dotted line assumes α = 5.

assembled by the reionization redshift. This mass can be estimated by the
linear Jeans mass MJ in equation (62). The Jeans mass does not in general
precisely equal the limiting mass for accretion (see the discussion in the next
section). Indeed, at a given redshift some gas can continue to fall into halos of
lower mass than the Jeans mass at that redshift. On the other hand, the larger
Jeans mass at higher redshifts means that a time-averaged Jeans mass may
be more appropriate, as indicated by the filtering mass. In practice, the Jeans
mass is sufficiently accurate since at z ∼ 10–20 it agrees well with the values
found in the numerical spherical collapse calculations of Haiman, Thoul, &
Loeb (1996) [168].

The right panel of Figure 50 (adopted from Fig. 7 of Barkana & Loeb 1999
[22]) shows the total fraction of gas in the Universe which evaporates from
halos at reionization, versus the reionization redshift. The solid line assumes
a spectral index α = 1.8, and the dotted line assumes α = 5, showing that
the result is insensitive to the spectrum. Even at high redshift, the amount
of gas which participates in photo-evaporation is significant, which suggests
a number of possible implications as discussed below. The gas fraction shown
in the figure represents most (∼ 60–80% depending on the redshift) of the
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collapsed fraction before reionization, although some gas does remain in more
massive halos.

The photo-evaporation of gas out of large numbers of halos may have
interesting implications. First, gas which falls into halos and is expelled at
reionization attains a different entropy than if it had stayed in the low-density
IGM. The resulting overall reduction in the entropy is expected to be small –
the same as would be produced by reducing the temperature of the entire IGM
by a factor of ∼ 1.5 – but localized effects near photo-evaporating halos may
be more significant. Furthermore, the resulting ∼ 20 km s−1 outflows induce
small-scale fluctuations in peculiar velocity and temperature. These outflows
are usually well below the resolution limit of most numerical simulations, but
some outflows were resolved in the simulation of Bryan et al. (1998) [70]. The
evaporating halos may consume a significant number of ionizing photons in
the post-overlap stage of reionization [174, 186], but a definitive determination
requires detailed simulations which include the three-dimensional geometry of
source halos and sink halos.

Although gas is quickly expelled out of the smallest halos, photo-evaporation
occurs more gradually in larger halos which retain some of their gas. These
surviving halos initially expand but they continue to accrete dark matter and
to merge with other halos. These evaporating gas halos could contribute to
the high column density end of the Lyα forest [51]. Abel & Mo (1998) [3]
suggested that, based on the expected number of surviving halos, a large frac-
tion of the Lyman limit systems at z ∼ 3 may correspond to mini-halos that
survived reionization. Surviving halos may even have identifiable remnants in
the present Universe. These ideas thus offer the possibility that a population
of halos which originally formed prior to reionization may correspond almost
directly to several populations that are observed much later in the history
of the Universe. However, the detailed dynamics of photo-evaporating halos
are complex, and detailed simulations are required to confirm these ideas.
Photo-evaporation of a gas cloud has been followed in a two dimensional sim-
ulation with radiative transfer, by Shapiro & Raga (2000) [331]. They found
that an evaporating halo would indeed appear in absorption as a damped
Lyα system initially, and as a weaker absorption system subsequently. Future
simulations [186] will clarify the contribution to quasar absorption lines of the
entire population of photo-evaporating halos.

7.5 Suppression of the Formation of Low Mass Galaxies

At the end of overlap, the cosmic ionizing background increased sharply, and
the IGM was heated by the ionizing radiation to a temperature > 104 K. Due
to the substantial increase in the IGM temperature, the intergalactic Jeans
mass increased dramatically, changing the minimum mass of forming galaxies
[299, 117, 148, 255].

Gas infall depends sensitively on the Jeans mass. When a halo more mas-
sive than the Jeans mass begins to form, the gravity of its dark matter over-
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comes the gas pressure. Even in halos below the Jeans mass, although the
gas is initially held up by pressure, once the dark matter collapses its in-
creased gravity pulls in some gas [168]. Thus, the Jeans mass is generally
higher than the actual limiting mass for accretion. Before reionization, the
IGM is cold and neutral, and the Jeans mass plays a secondary role in limit-
ing galaxy formation compared to cooling. After reionization, the Jeans mass
is increased by several orders of magnitude due to the photoionization heat-
ing of the IGM, and hence begins to play a dominant role in limiting the
formation of stars. Gas infall in a reionized and heated Universe has been
investigated in a number of numerical simulations. Thoul & Weinberg (1996)
[363] inferred, based on a spherically-symmetric collapse simulation, a reduc-
tion of ∼ 50% in the collapsed gas mass due to heating, for a halo of circular
velocity Vc ∼ 50 km s−1 at z = 2, and a complete suppression of infall below
Vc ∼ 30 km s−1. Kitayama & Ikeuchi (2000) [201] also performed spherically-
symmetric simulations but included self-shielding of the gas, and found that
it lowers the circular velocity thresholds by ∼ 5 km s−1. Three dimensional
numerical simulations [294, 378, 267] found a significant suppression of gas
infall in even larger halos (Vc ∼ 75 km s−1), but this was mostly due to a
suppression of late infall at z < 2.

When a volume of the IGM is ionized by stars, the gas is heated to a
temperature TIGM ∼ 104 K. If quasars dominate the UV background at reion-
ization, their harder photon spectrum leads to TIGM > 2 × 104 K. Including
the effects of dark matter, a given temperature results in a linear Jeans mass
corresponding to a halo circular velocity of

VJ = 81

(

TIGM

1.5 × 104K

)1/2 [
1

Ω z
m

∆c

18π2

]1/6

km s−1, (136)

where we used equation (85) and assumed µ = 0.6. In halos with Vc > VJ ,
the gas fraction in infalling gas equals the universal mean of Ωb/Ωm, but
gas infall is suppressed in smaller halos. Even for a small dark matter halo,
once it collapses to a virial overdensity of ∆c/Ω z

m relative to the mean, it
can pull in additional gas. A simple estimate of the limiting circular velocity,
below which halos have essentially no gas infall, is obtained by substituting
the virial overdensity for the mean density in the definition of the Jeans mass.
The resulting estimate is

Vlim = 34

(

TIGM

1.5 × 104K

)1/2

km s−1. (137)

This value is in rough agreement with the numerical simulations mentioned
before. A more recent study by Dijkstra et al. (2004) [107] indicates that at
the high redshifts of z > 10 gas could nevertheless assemble into halos with
circular velocities as low as vc ∼ 10 km s−1, even in the presence of a UV
background.
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Although the Jeans mass is closely related to the rate of gas infall at a
given time, it does not directly yield the total gas residing in halos at a given
time. The latter quantity depends on the entire history of gas accretion onto
halos, as well as on the merger histories of halos, and an accurate description
must involve a time-averaged Jeans mass. Gnedin [153] showed that the gas
content of halos in simulations is well fit by an expression which depends
on the filtering mass, a particular time-averaged Jeans mass (Gnedin & Hui
1998 [150]). Gnedin [153] calculated the Jeans and filtering masses using the
mean temperature in the simulation to define the sound speed, and found the
following fit to the simulation results:

M̄g =
fbM

[

1 +
(

21/3 − 1
)

MC/M
]3 , (138)

where M̄g is the average gas mass of all objects with a total mass M , fb =
Ωb/Ωm is the universal baryon fraction, and the characteristic mass MC is
the total mass of objects which on average retain 50% of their gas mass. The
characteristic mass was well fit by the filtering mass at a range of redshifts
from z = 4 up to z ∼ 15.

The reionization process was not perfectly synchronized throughout the
Universe. Large-scale regions with a higher density than the mean tend to form
galaxies first and reionize earlier than underdense regions (see detailed discus-
sion in §168). The suppression of low-mass galaxies by reionization will there-
fore be modulated by the fluctuations in the timing of reionization. Babich &
Loeb (2005) [14] considered the effect of inhomogeneous reionization on the
power-spectrum of low-mass galaxies. They showed that the shape of the high
redshift galaxy power spectrum on small scales in a manner which depends
on the details of epoch of reionization. This effect is significantly larger than
changes in the galaxy power spectrum due to the current uncertainty in the
inflationary parameters, such as the tilt of the scalar power spectrum n and
the running of the tilt α. Therefore, future high redshift galaxies surveys hop-
ing to constrain inflationary parameters must properly model the effects of
reionization, but conversely they will also be sensitive to the thermal history
of the high redshift intergalactic medium.

8 Feedback from Galactic Outflows

8.1 Propagation of Supernova Outflows in the IGM

Star formation is accompanied by the violent death of massive stars in su-
pernova explosions. In general, if each halo has a fixed baryon fraction and a
fixed fraction of the baryons turns into massive stars, then the total energy in
supernovae outflows is proportional to the halo mass. The binding energy of
the gas in the halo is proportional to the halo mass squared. Thus, outflows
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are expected to escape more easily out of low-mass galaxies, and to expel a
greater fraction of the gas from dwarf galaxies. At high redshifts, most galax-
ies form in relatively low-mass halos, and the high halo merger rate leads to
vigorous star formation. Thus, outflows may have had a great impact on the
earliest generations of galaxies, with consequences that may include metal en-
richment of the IGM and the disruption of dwarf galaxies. In this subsection
we present a simple model for the propagation of individual supernova shock
fronts in the IGM. We discuss some implications of this model, but we defer
to the following subsection the brunt of the discussion of the cosmological
consequences of outflows.

For a galaxy forming in a given halo, the supernova rate is related to the
star formation rate. In particular, for a Scalo (1998) [315] initial stellar mass
function, if we assume that a supernova is produced by each M > 8M⊙ star,
then on average one supernova explodes for every 126 M⊙ of star formation,
expelling an ejecta mass of ∼ 3 M⊙ including ∼ 1 M⊙ of heavy elements. We
assume that the individual supernovae produce expanding hot bubbles which
merge into a single overall region delineated by an outwardly moving shock
front. We assume that most of the baryons in the outflow lie in a thin shell,
while most of the thermal energy is carried by the hot interior. The total
ejected mass equals a fraction fgas of the total halo gas which is lifted out
of the halo by the outflow. This gas mass includes a fraction feject of the
mass of the supernova ejecta itself (with feject ≤ 1 since some metals may be
deposited in the disk and not ejected). Since at high redshift most of the halo
gas is likely to have cooled onto a disk, we assume that the mass carried by the
outflow remains constant until the shock front reaches the halo virial radius.
We assume an average supernova energy of 1051E51 erg, a fraction fwind of
which remains in the outflow after it escapes from the disk. The outflow must
overcome the gravitational potential of the halo, which we assume to have
a Navarro, Frenk, & White (1997) [266] density profile [NFW; see equation
(88)]. Since the entire shell mass must be lifted out of the halo, we include
the total shell mass as well as the total injected energy at the outset. This
assumption is consistent with the fact that the burst of star formation in a
halo is typically short compared to the total time for which the corresponding
outflow expands.

The escape of an outflow from an NFW halo depends on the concentration
parameter cN of the halo. Simulations by Bullock et al. (2000) [72] indicate
that the concentration parameter decreases with redshift, and their results
may be extrapolated to our regime of interest (i.e., to smaller halo masses
and higher redshifts) by assuming that

cN =

(

M

109M⊙

)−0.1
25

(1 + z)
. (139)

Although we calculate below the dynamics of each outflow in detail, it is also
useful to estimate which halos can generate large-scale outflows by comparing
the kinetic energy of the outflow to the potential energy needed to completely
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escape (i.e., to infinite distance) from an NFW halo. We thus find that the
outflow can escape from its originating halo if the circular velocity is below a
critical value given by

Vcrit = 200

√

E51fwind(η/0.1)

fgas g(cN)
km s−1 , (140)

where the efficiency η is the fraction of baryons incorporated in stars, and

g(x) =
x2

(1 + x) ln(1 + x) − x
. (141)

Note that the contribution to fgas of the supernova ejecta itself is 0.024ηfeject,
so the ejecta mass is usually negligible unless fgas < 1%. Equation (140) can
also be used to yield the maximum gas fraction fgas which can be ejected from
halos, as a function of their circular velocity. Although this equation is most
general, if we assume that the parameters fgas and fwind are independent of
M and z then we can normalize them based on low-redshift observations. If
we specify cN ∼ 10 (with g(10) = 6.1) at z = 0, then setting E51 = 1 and
η = 10% yields the required energy efficiency as a function of the ejected halo
gas fraction:

fwind = 1.5fgas

[

Vcrit

100 km s−1

]2

. (142)

A value of Vcrit ∼ 100 km s−1 is suggested by several theoretical and ob-
servational arguments which are discussed in the next subsection. However,
these arguments are not conclusive, and Vcrit may differ from this value by
a large factor, especially at high redshift (where outflows are observationally
unconstrained at present). Note the degeneracy between fgas and fwind which
remains even if Vcrit is specified. Thus, if Vcrit ∼ 100 km s−1 then a high
efficiency fwind ∼ 1 is required to eject most of the gas from all halos with
Vc < Vcrit, but only fwind ∼ 10% is required to eject 5–10% of the gas. The
evolution of the outflow does depend on the value of fwind and not just the
ratio fwind/fgas, since the shell accumulates material from the IGM which
eventually dominates over the initial mass carried by the outflow.

We solve numerically for the spherical expansion of a galactic outflow,
elaborating on the basic approach of Tegmark, Silk, & Evrard (1993) [358].
We assume that most of the mass m carried along by the outflow lies in a
thin, dense, relatively cool shell of proper radius R. The interior volume, while
containing only a fraction fint ≪ 1 of the mass m, carries most of the thermal
energy in a hot, isothermal plasma of pressure pint and temperature T . We
assume a uniform exterior gas, at the mean density of the Universe (at each
redshift), which may be neutral or ionized, and may exert a pressure pext as
indicated below. We also assume that the dark matter distribution follows the
NFW profile out to the virial radius, and is at the mean density of the Universe
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outside the halo virial radius. Note that in reality an overdense distribution
of gas as well as dark matter may surround each halo due to secondary infall.

The shell radius R in general evolves as follows:

m
d2R

dt2
= 4πR2δp −

(

dR

dt
− HR

)

dm

dt
− Gm

R2

(

M(R) +
1

2
m

)

+
8

3
πGRmρΛ ,

(143)
where the right-hand-side includes forces due to pressure, sweeping up of
additional mass, gravity, and a cosmological constant, respectively. The shell
is accelerated by internal pressure and decelerated by external pressure, i.e.,
δp = pint − pext. In the gravitational force, M(R) is the total enclosed mass,
not including matter in the shell, and 1

2m is the effective contribution of
the shell mass in the thin-shell approximation [279]. The interior pressure is
determined by energy conservation, and evolves according to [358]:

dpint

dt
=

L

2πR3
− 5

pint

R

dR

dt
, (144)

where the luminosity L incorporates heating and cooling terms. We include
in L the supernova luminosity Lsn (during a brief initial period of energy
injection), cooling terms Lcool, ionization Lion, and dissipation Ldiss. For sim-
plicity, we assume ionization equilibrium for the interior plasma, and a pri-
mordial abundance of hydrogen and helium. We include in Lcool all relevant
atomic cooling processes in hydrogen and helium, i.e., collisional processes,
Bremsstrahlung emission, and Compton cooling off the CMB. Compton scat-
tering is the dominant cooling process for high-redshift outflows. We include
in Lion only the power required to ionize the incoming hydrogen upstream, at
the energy cost of 13.6 eV per hydrogen atom. The interaction between the
expanding shell and the swept-up mass dissipates kinetic energy. The fraction
fd of this energy which is re-injected into the interior depends on complex pro-
cesses occurring near the shock front, including turbulence, non-equilibrium
ionization and cooling, and so (following Tegmark et al. 1993 [358]) we let

Ldiss =
1

2
fd

dm

dt

(

dR

dt
− HR

)2

, (145)

where we set fd = 1 and compare below to the other extreme of fd = 0.
In an expanding Universe, it is preferable to describe the propagation of

outflows in terms of comoving coordinates since, e.g., the critical result is the
maximum comoving size of each outflow, since this size yields directly the
total IGM mass which is displaced by the outflow and injected with metals.
Specifically, we apply the following transformation [328, 374]:

dt̂ = a−2dt, R̂ = a−1R, p̂ = a5p, ρ̂ = a3ρ . (146)

For ΩΛ = 0, Voit (1996) [374] obtained (with the time origin t̂ = 0 at redshift
z1):
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t̂ =
2

ΩmH0

[

√

1 + Ωmz1 −
√

1 + Ωmz
]

, (147)

while for Ωm + ΩΛ = 1 there is no simple analytic expression. We set β =
R̂/r̂vir, in terms of the virial radius rvir [equation (84)] of the source halo. We
define α1

S as the ratio of the shell mass m to 4
3πρ̂b r̂3

vir, where ρ̂b = ρb(z = 0) is
the mean baryon density of the Universe at z = 0. More generally, we define

αS(β) ≡ m
4
3πρ̂b ρ̂3

=

{

α1
S/β3 if β < 1

1 +
(

α1
S − 1

)

/β3 otherwise.
(148)

Here we assumed, as noted above, that the shell mass is constant until the
halo virial radius is reached, at which point the outflow begins to sweep up
material from the IGM. We thus derive the following equations:

d2R̂

dt̂2
=















3
αS(β)

p̂

ρ̂b R̂
− a

2 R̂H2
0Ωmδ̄(β) if β < 1

3
αS(β)R̂

[

p̂
ρ̂b

−
(

dR̂
dt̂

)2
]

− a
2 R̂H2

0Ωmδ̄(β) + a
4 R̂H2

0ΩbαS(β) otherwise,

(149)
along with

d

dt̂

(

R̂5p̂int

)

=
a4

2π
LR̂2 . (150)

In the evolution equation for R̂, for β < 1 we assume for simplicity that the
baryons are distributed in the same way as the dark matter, since in any case
the dark matter halo dominates the gravitational force. For β > 1, however,
we correct (via the last term on the right-hand side) for the presence of mass in
the shell, since at β ≫ 1 this term may become important. The β > 1 equation
also includes the braking force due to the swept-up IGM mass. The enclosed
mean overdensity for the NFW profile [Eq. (88)] surrounded by matter at the
mean density is

δ̄(β) =











∆c

Ω z
m

β3

ln(1+cNβ)−cNβ/(1+cNβ)
ln(1+c)−c/(1+c) if β < 1

(

∆c

Ω z
m

− 1
)

1
β3 otherwise.

(151)

The physics of supernova shells is discussed in Ostriker & McKee (1988)
[279] along with a number of analytical solutions. The propagation of cos-
mological blast waves has also been computed by Ostriker & Cowie (1981)
[278], Bertschinger (1985) [40] and Carr & Ikeuchi (1985) [74]. Voit (1996)
[374] derived an exact analytic solution to the fluid equations which, although
of limited validity, is nonetheless useful for understanding roughly how the
outflow size depends on several of the parameters. The solution requires an
idealized case of an outflow which at all times expands into a homogeneous
IGM. Peculiar gravitational forces, and the energy lost in escaping from the
host halo, are neglected, cooling and ionization losses are also assumed to be
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negligible, and the external pressure is not included. The dissipated energy
is assumed to be retained, i.e., fd is set equal to unity. Under these condi-
tions, the standard Sedov self-similar solution [324, 325] generalizes to the
cosmological case as follows [374]:

R̂ =

(

ξÊ0

ρ̂b

)1/5

t̂ 2/5 , (152)

where ξ = 2.026 and Ê0 = E0/(1+z1)
2 in terms of the initial (i.e., at t = t̂ = 0

and z = z1) energy E0. Numerically, the comoving radius is

R̂ = 280

(

0.022

Ωbh2

E0

1056erg

)1/5(
10

1 + z1

t̂

1010yr

)2/5

kpc . (153)

In solving the equations described above, we assume that the shock front
expands into a pre-ionized region which then recombines after a time de-
termined by the recombination rate. Thus, the external pressure is included
initially, it is turned off after the pre-ionized region recombines, and it is then
switched back on at a lower redshift when the Universe is reionized. When
the ambient IGM is neutral and the pressure is off, the shock loses energy
to ionization. In practice we find that the external pressure is unimportant
during the initial expansion, although it is generally important after reioniza-
tion. Also, at high redshift ionization losses are much smaller than losses due
to Compton cooling. In the results shown below, we assume an instantaneous
reionization at z = 9.

Figure 51 shows the results for a starting redshift z = 15, for a halo of
mass 5.4 × 107M⊙, stellar mass 8.0 × 105M⊙, comoving r̂vir = 12 kpc, and
circular velocity Vc = 20 km/s. We show the shell comoving radius in units
of the virial radius of the source halo (top panel), and the physical peculiar
velocity of the shock front (bottom panel). Results are shown (solid curve)
for the standard set of parameters fint = 0.1, fd = 1, fwind = 75%, and
fgas = 50%. For comparison, we show several cases which adopt the standard
parameters except for no cooling (dotted curve), no reionization (short-dashed
curve), fd = 0 (long-dashed curve), or fwind = 15% and fgas = 10% (dot-short
dashed curve). When reionization is included, the external pressure halts the
expanding bubble. We freeze the radius at the point of maximum expansion
(where dR̂/dt̂ = 0), since in reality the shell will at that point begin to spread
and fill out the interior volume due to small-scale velocities in the IGM. For the
chosen parameters, the bubble easily escapes from the halo, but when fwind

and fgas are decreased the accumulated IGM mass slows down the outflow
more effectively. In all cases the outflow reaches a size of 10–20 times r̂vir, i.e.,
100–200 comoving kpc. If all the metals are ejected (i.e., feject = 1), then this
translates to an average metallicity in the shell of ∼ 1–5×10−3 in units of the
solar metallicity (which is 2% by mass). The asymptotic size of the outflow

varies roughly as f
1/5
wind, as predicted by the simple solution in equation (152),
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but the asymptotic size is rather insensitive to fgas (at a fixed fwind) since the

outflow mass becomes dominated by the swept-up IGM mass once R̂ > 4r̂vir.
With the standard parameter values (i.e., those corresponding to the solid
curve), Figure 51 also shows (dot-long dashed curve) the Voit (1996) [374]
solution of equation (152). The Voit solution behaves similarly to the no-
reionization curve at low redshift, although it overestimates the shock radius
by ∼ 30%, and the overestimate is greater compared to the more realistic case
which does include reionization.

Fig. 51. Evolution of a supernova outflow from a z = 15 halo of circular velocity
Vc = 20 km/s. Plotted are the shell comoving radius in units of the virial radius
of the source halo (top panel), and the physical peculiar velocity of the shock front
(bottom panel). Results are shown for the standard parameters fint = 0.1, fd = 1,
fwind = 75%, and fgas = 50% (solid curve). Also shown for comparison are the cases
of no cooling (dotted curve), no reionization (short-dashed curve), fd = 0 (long-
dashed curve), or fwind = 15% and fgas = 10% (dot-short dashed curve), as well as
the simple Voit (1996) [374] solution of equation (152) for the standard parameter
set (dot-long dashed curve). In cases where the outflow halts, we freeze the radius
at the point of maximum expansion.

Figure 52 shows different curves than Figure 51 but on an identical layout.
A single curve starting at z = 15 (solid curve) is repeated from Figure 51,
and it is compared here to outflows with the same parameters but starting at
z = 20 (dotted curve), z = 10 (short-dashed curve), and z = 5 (long-dashed
curve). A Vc = 20 km/s halo, with a stellar mass equal to 1.5% of the total
halo mass, is chosen at the three higher redshifts, but at z = 5 a Vc = 42 km/s
halo is assumed. Because of the suppression of gas infall after reionization, we
assume that the z = 5 outflow is produced by supernovae from a stellar mass
equal to only 0.3% of the total halo mass (with a similarly reduced initial shell
mass), thus leading to a relatively small final shell radius. The main conclusion
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from both figures is the following: In all cases, the outflow undergoes a rapid
initial expansion over a fractional redshift interval δz/z ∼ 0.2, at which point
the shell has slowed down to ∼ 10 km/s from an initial 300 km/s. The rapid
deceleration is due to the accumulating IGM mass. External pressure from the
reionized IGM completely halts all high-redshift outflows, and even without
this effect most outflows would only move at ∼ 10 km/s after the brief initial
expansion. Thus, it may be possible for high-redshift outflows to pollute the
Lyman alpha forest with metals without affecting the forest hydrodynamically
at z < 4. While the bulk velocities of these outflows may dissipate quickly,
the outflows do sweep away the IGM and create empty bubbles. The resulting
effects on observations of the Lyman alpha forest should be studied in detail
(some observational signatures of feedback have been suggested recently by
Theuns, Mo, & Schaye 2000 [362]).

Fig. 52. Evolution of supernova outflows at different redshifts. The top and bot-
tom panels are arranged similarly to Figure 51. The z = 15 outflow (solid curve) is
repeated from Figure 51, and it is compared here to outflows with the same param-
eters but starting at z = 20 (dotted curve), z = 10 (short-dashed curve), and z = 5
(long-dashed curve). A Vc = 20 km/s halo is assumed except for z = 5, in which
case a Vc = 42 km/s halo is assumed to produce the outflow (see text).

Furlanetto & Loeb (2003) [141] derived the evolution of the characteristic
scale and filling fraction of supernova-driven bubbles based on a refinement
of this formalism (see also their 2001 paper for quasar-driven outflows). The
role of metal-rich outflows in smearing the transition epoch between Pop-III
(metal-free) and Pop II (metal-enriched) stars, was also analysed by Furlan-
etto & Loeb (2005) [144], who concluded that a double-reionization history in
which the ionization fraction goes through two (or more) peaks is unlikely.
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8.2 Effect of Outflows on Dwarf Galaxies and on the IGM

Galactic outflows represent a complex feedback process which affects the evo-
lution of cosmic gas through a variety of phenomena. Outflows inject hydro-
dynamic energy into the interstellar medium of their host galaxy. As shown in
the previous subsection, even a small fraction of this energy suffices to eject
most of the gas from a dwarf galaxy, perhaps quenching further star forma-
tion after the initial burst. At the same time, the enriched gas in outflows
can mix with the interstellar medium and with the surrounding IGM, allow-
ing later generations of stars to form more easily because of metal-enhanced
cooling. On the other hand, the expanding shock waves may also strip gas in
surrounding galaxies and suppress star formation.

Dekel & Silk (1986) [104] attempted to explain the different properties of
diffuse dwarf galaxies in terms of the effect of galactic outflows. They noted
the observed trends whereby lower-mass dwarf galaxies have a lower surface
brightness and metallicity, but a higher mass-to-light ratio, than higher mass
galaxies. They argued that these trends are most naturally explained by sub-
stantial gas removal from an underlying dark matter potential. Galaxies lying
in small halos can eject their remaining gas after only a tiny fraction of the
gas has turned into stars, while larger galaxies require more substantial star
formation before the resulting outflows can expel the rest of the gas. Assuming
a wind efficiency fwind ∼ 100%, Dekel & Silk showed that outflows in halos
below a circular velocity threshold of Vcrit ∼ 100 km/s have sufficient energy
to expel most of the halo gas. Furthermore, cooling is very efficient for the
characteristic gas temperatures associated with Vcrit < 100 km/s halos, but
it becomes less efficient in more massive halos. As a result, this critical veloc-
ity is expected to signify a dividing line between bright galaxies and diffuse
dwarf galaxies. Although these simple considerations may explain a number
of observed trends, many details are still not conclusively determined. For
instance, even in galaxies with sufficient energy to expel the gas, it is possible
that this energy gets deposited in only a small fraction of the gas, leaving the
rest almost unaffected.

Since supernova explosions in an inhomogeneous interstellar medium lead
to complicated hydrodynamics, in principle the best way to determine the
basic parameters discussed in the previous subsection (fwind, fgas, and feject)
is through detailed numerical simulations of individual galaxies. Mac Low &
Ferrara (1999) [235] simulated a gas disk within a z = 0 dark matter halo.
The disk was assumed to be azimuthally symmetric and initially smooth. They
represented supernovae by a central source of energy and mass, assuming a
constant luminosity which is maintained for 50 million years. They found that
the hot, metal-enriched ejecta can in general escape from the halo much more
easily than the colder gas within the disk, since the hot gas is ejected in a tube
perpendicular to the disk without displacing most of the gas in the disk. In
particular, most of the metals were expelled except for the case with the most
massive halo considered (with 109M⊙ in gas) and the lowest luminosity (1037
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erg/s, or a total injection of 2 × 1052 erg). On the other hand, only a small
fraction of the total gas mass was ejected except for the least massive halo
(with 106M⊙ in gas), where a luminosity of 1038 erg/s or more expelled most
of the gas. We note that beyond the standard issues of numerical resolution
and convergence, there are several difficulties in applying these results to
high-redshift dwarf galaxies. Clumping within the expanding shells or the
ambient interstellar medium may strongly affect both the cooling and the
hydrodynamics. Also, the effect of distributing the star formation throughout
the disk is unclear since in that case several characteristics of the problem
will change; many small explosions will distribute the same energy over a
larger gas volume than a single large explosion [as in the Sedov (1959) [324]
solution; see, e.g., equation (152)], and the geometry will be different as each
bubble tries to dig its own escape route through the disk. Also, high-redshift
disks should be denser by orders of magnitude than z = 0 disks, due to the
higher mean density of the Universe at early times. Thus, further numerical
simulations of this process are required in order to assess its significance during
the reionization epoch.

Some input on these issues also comes from observations. Martin (1999)
[247] showed that the hottest extended X-ray emission in galaxies is charac-
terized by a temperature of ∼ 106.7 K. This hot gas, which is lifted out of the
disk at a rate comparable to the rate at which gas goes into new stars, could
escape from galaxies with rotation speeds of < 130 km/s. However, these
results are based on a small sample which includes only the most vigorous
star-forming local galaxies, and the mass-loss rate depends on assumptions
about the poorly understood transfer of mass and energy among the various
phases of the interstellar medium.

Many authors have attempted to estimate the overall cosmological effects
of outflows by combining simple models of individual outflows with the forma-
tion rate of galaxies, obtained via semi-analytic methods [98, 358, 374, 265,
129, 317] or numerical simulations [148, 149, 80, 9]. The main goal of these cal-
culations is to explain the characteristic metallicities of different environments
as a function of redshift. For example, the IGM is observed to be enriched with
metals at redshifts z < 5. Identification of C IV, Si IV an O VI absorption
lines which correspond to Lyα absorption lines in the spectra of high-redshift
quasars has revealed that the low-density IGM has been enriched to a metal
abundance (by mass) of ZIGM ∼ 10−2.5(±0.5)Z⊙, where Z⊙ = 0.019 is the
solar metallicity [252, 372, 347, 229, 99, 346, 121]. The metal enrichment has
been clearly identified down to H I column densities of ∼ 1014.5 cm−2. The
detailed comparison of cosmological hydrodynamic simulations with quasar
absorption spectra has established that the forest of Lyα absorption lines is
caused by the smoothly-fluctuating density of the neutral component of the
IGM [84, 405, 180]. The simulations show a strong correlation between the
H I column density and the gas overdensity δgas [102], implying that metals
were dispersed into regions with an overdensity as low as δgas ∼ 3 or possibly
even lower.
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In general, dwarf galaxies are expected to dominate metal enrichment at
high-redshift for several reasons. As noted above and in the previous sub-
section, outflows can escape more easily out of the potential wells of dwarfs.
Also, at high redshift, massive halos are rare and dwarf halos are much more
common. Finally, as already noted, the Sedov (1959) [324] solution [or equa-
tion (152)] implies that for a given total energy and expansion time, multiple
small outflows fill large volumes more effectively than would a smaller number
of large outflows. Note, however, that the strong effect of feedback in dwarf
galaxies may also quench star formation rapidly and reduce the efficiency of
star formation in dwarfs below that found in more massive galaxies.

Cen & Ostriker (1999) [80] showed via numerical simulation that metals
produced by supernovae do not mix uniformly over cosmological volumes. In-
stead, at each epoch the highest density regions have much higher metallicity
than the low-density IGM. They noted that early star formation occurs in the
most overdense regions, which therefore reach a high metallicity (of order a
tenth of the solar value) by z ∼ 3, when the IGM metallicity is lower by 1–2 or-
ders of magnitude. At later times, the formation of high-temperature clusters
in the highest-density regions suppresses star formation there, while lower-
density regions continue to increase their metallicity. Note, however, that the
spatial resolution of the hydrodynamic code of Cen & Ostriker is a few hun-
dred kpc, and anything occurring on smaller scales is inserted directly via
simple parametrized models. Scannapieco & Broadhurst (2000) [317] imple-
mented expanding outflows within a numerical scheme which, while not a full
gravitational simulation, did include spatial correlations among halos. They
showed that winds from low-mass galaxies may also strip gas from nearby
galaxies (see also Scannapieco, Ferrara, & Broadhurst 2000 [318]), thus sup-
pressing star formation in a local neighborhood and substantially reducing the
overall abundance of galaxies in halos below a mass of ∼ 1010M⊙. Although
quasars do not produce metals, they may also affect galaxy formation in their
vicinity via energetic outflows [116, 15, 339, 263].

Gnedin & Ostriker (1997) [148] and Gnedin (1998) [149] identified another
mixing mechanism which, they argued, may be dominant at high redshift
(z > 4). In a collision between two protogalaxies, the gas components collide
in a shock and the resulting pressure force can eject a few percent of the gas
out of the merger remnant. This is the merger mechanism, which is based
on gravity and hydrodynamics rather than direct stellar feedback. Even if
supernovae inject most of their metals in a local region, larger-scale mixing
can occur via mergers. Note, however, that Gnedin’s (1998) [149] simulation
assumed a comoving star formation rate at z > 5 of ∼ 1M⊙ per year per
comoving Mpc3, which is 5–10 times larger than the observed rate at redshift
3–4. Aguirre et al. [9] used outflows implemented in simulations to conclude
that winds of ∼ 300 km/s at z < 6 can produce the mean metallicity observed
at z ∼ 3 in the Lyα forest. In a separate paper Aguirre et al. [10] explored
another process, where metals in the form of dust grains are driven to large
distances by radiation pressure, thus producing large-scale mixing without
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displacing or heating large volumes of IGM gas. The success of this mechanism
depends on detailed microphysics such as dust grain destruction and the effect
of magnetic fields. The scenario, though, may be directly testable because it
leads to significant ejection only of elements which solidify as grains.

Feedback from galactic outflows encompasses a large variety of processes
and influences. The large range of scales involved, from stars or quasars em-
bedded in the interstellar medium up to the enriched IGM on cosmological
scales, make possible a multitude of different, complementary approaches,
promising to keep galactic feedback an active field of research.

9 The Frontier of 21cm Cosmology

9.1 Mapping Hydrogen Before Reionization

The small residual fraction of free electrons after cosmological recombination
coupled the temperature of the cosmic gas to that of the cosmic microwave
background (CMB) down to a redshift, z ∼ 200 [284]. Subsequently, the gas
temperature dropped adiabatically as Tgas ∝ (1 + z)2 below the CMB tem-
perature Tγ ∝ (1 + z). The gas heated up again after being exposed to the
photo-ionizing ultraviolet light emitted by the first stars during the reioniza-
tion epoch at z < 20. Prior to the formation of the first stars, the cosmic
neutral hydrogen must have resonantly absorbed the CMB flux through its
spin-flip 21cm transition [131, 323, 367, 404]. The linear density fluctuations
at that time should have imprinted anisotropies on the CMB sky at an ob-
served wavelength of λ = 21.12[(1 + z)/100] meters. We discuss these early
21cm fluctuations mainly for pedagogical purposes. Detection of the earliest
21cm signal will be particularly challenging because the foreground sky bright-
ness rises as λ2.5 at long wavelengths in addition to the standard

√
λ scaling

of the detector noise temperature for a given integration time and fractional
bandwidth. The discussion in this section follows Loeb & Zaldarriaga (2004)
[226].

We start by calculating the history of the spin temperature, Ts, defined
through the ratio between the number densities of hydrogen atoms in the
excited and ground state levels, n1/n0 = (g1/g0) exp {−T⋆/Ts} ,

n1

n0
=

g1

g0
exp

{

−T⋆

Ts

}

, (154)

where subscripts 1 and 0 correspond to the excited and ground state levels of
the 21cm transition, (g1/g0) = 3 is the ratio of the spin degeneracy factors of
the levels, nH = (n0 + n1) ∝ (1 + z)3 is the total hydrogen density, and T⋆ =
0.068K is the temperature corresponding to the energy difference between the
levels. The time evolution of the density of atoms in the ground state is given
by,
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Fig. 53. The 21cm transition of hydrogen. The higher energy level the spin of
the electron (e-) is aligned with that of the proton (p+). A spin flip results in the
emission of a photon with a wavelength of 21cm (or a frequency of 1420MHz).

(

∂

∂t
+ 3

ȧ

a

)

n0 = −n0 (C01 + B01Iν)

+ n1 (C10 + A10 + B10Iν) , (155)

where a(t) = (1+z)−1 is the cosmic scale factor, A’s and B’s are the Einstein
rate coefficients, C’s are the collisional rate coefficients, and Iν is the black-
body intensity in the Rayleigh-Jeans tail of the CMB, namely Iν = 2kTγ/λ2

with λ = 21 cm [306]. Here a dot denotes a time-derivative. The 0 → 1 transi-
tion rates can be related to the 1 → 0 transition rates by the requirement that
in thermal equilibrium with Ts = Tγ = Tgas, the right-hand-side of Eq. (155)
should vanish with the collisional terms balancing each other separately from
the radiative terms. The Einstein coefficients are A10 = 2.85 × 10−15 s−1,
B10 = (λ3/2hc)A10 and B01 = (g1/g0)B10 [131, 306]. The collisional de-
excitation rates can be written as C10 = 4

3κ(1 − 0)nH, where κ(1 − 0) is
tabulated as a function of Tgas [11, 406].

Equation (155) can be simplified to the form,

dΥ

dz
= − [H(1 + z)]−1 [−Υ (C01 + B01Iν)

+(1 − Υ )(C10 + A10 + B10Iν)] , (156)
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where Υ ≡ n0/nH, H ≈ H0

√
Ωm(1 + z)3/2 is the Hubble parameter at high

redshifts (with a present-day value of H0), and Ωm is the density parameter of
matter. The upper panel of Fig. 54 shows the results of integrating Eq. (156).
Both the spin temperature and the kinetic temperature of the gas track the
CMB temperature down to z ∼ 200. Collisions are efficient at coupling Ts

and Tgas down to z ∼ 70 and so the spin temperature follows the kinetic tem-
perature around that redshift. At much lower redshifts, the Hubble expansion
makes the collision rate subdominant relative the radiative coupling rate to
the CMB, and so Ts tracks Tγ again. Consequently, there is a redshift window
between 30 < z < 200, during which the cosmic hydrogen absorbs the CMB
flux at its resonant 21cm transition. Coincidentally, this redshift interval pre-
cedes the appearance of collapsed objects [23] and so its signatures are not
contaminated by nonlinear density structures or by radiative or hydrodynamic
feedback effects from stars and quasars, as is the case at lower redshifts [404].

Fig. 54. Upper panel: Evolution of the gas, CMB and spin temperatures with red-
shift [4]. Lower panel: dTb/dδH as function of redshift. The separate contributions
from fluctuations in the density and the spin temperature are depicted. We also
show dTb/dδHa ∝ dTb/dδH × δH , with an arbitrary normalization.

During the period when the spin temperature is smaller than the CMB
temperature, neutral hydrogen atoms absorb CMB photons. The resonant
21cm absorption reduces the brightness temperature of the CMB by,

Tb = τ (Ts − Tγ) /(1 + z), (157)

where the optical depth for resonant 21cm absorption is,

τ =
3cλ2hA10nH

32πkTsH(z)
. (158)



First Light 115

Small inhomogeneities in the hydrogen density δH ≡ (nH − n̄H)/n̄H result
in fluctuations of the 21cm absorption through two separate effects. An excess
of neutral hydrogen directly increases the optical depth and also alters the
evolution of the spin temperature. For now, we ignore the additional effects
of peculiar velocities (Bharadwaj & Ali 2004 [41]; Barkana & Loeb 2004 [27])
as well as fluctuations in the gas kinetic temperature due to the adiabatic
compression (rarefaction) in overdense (underdense) regions [29]. Under these
approximations, we can write an equation for the resulting evolution of Υ
fluctuations,

dδΥ

dz
= [H(1 + z)]

−1 {[C10 + C01 + (B01 + B10)Iν ]δΥ

+ [C01Υ − C10(1 − Υ )] δH} , (159)

leading to spin temperature fluctuations,

δTs

T̄s
= − 1

ln[3Υ/(1 − Υ )]

δΥ

Υ (1 − Υ )
. (160)

The resulting brightness temperature fluctuations can be related to the deriva-
tive,

δTb

T̄b
= δH +

Tγ

(T̄s − Tγ)

δTs

T̄s
. (161)

The spin temperature fluctuations δTs/Ts are proportional to the density
fluctuations and so we define,

dTb

dδH
≡ T̄b +

Tγ T̄b

(T̄s − Tγ)

δTs

T̄sδH
, (162)

through δTb = (dTb/dδH)δH . We ignore fluctuations in Cij due to fluctuations
in Tgas which are very small [11]. Figure 54 shows dTb/dδH as a function of
redshift, including the two contributions to dTb/dδH , one originating directly
from density fluctuations and the second from the associated changes in the
spin temperature [323]. Both contributions have the same sign, because an
increase in density raises the collision rate and lowers the spin temperature
and so it allows Ts to better track Tgas. Since δH grows with time as δH ∝ a,
the signal peaks at z ∼ 50, a slightly lower redshift than the peak of dTb/dδH .

Next we calculate the angular power spectrum of the brightness tempera-
ture on the sky, resulting from density perturbations with a power spectrum
Pδ(k),

〈δH(k1)δH(k2)〉 = (2π)3δD(k1 + k2)Pδ(k1). (163)

where δH(k) is the Fourier tansform of the hydrogen density field, k is the
comoving wavevector, and 〈· · · 〉 denotes an ensemble average (following the
formalism described in [404]). The 21cm brightness temperature observed at
a frequency ν corresponding to a distance r along the line of sight, is given by
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δTb(n, ν) =

∫

drWν (r)
dTb

dδH
δH(n, r), (164)

where n denotes the direction of observation, Wν(r) is a narrow function of
r that peaks at the distance corresponding to ν. The details of this function
depend on the characteristics of the experiment. The brightness fluctuations
in Eq. 164 can be expanded in spherical harmonics with expansion coeffi-
cients alm(ν). The angular power spectrum of map Cl(ν) = 〈|alm(ν)|2〉 can
be expressed in terms of the 3D power spectrum of fluctuations in the density
Pδ(k),

Cl(ν) = 4π

∫

d3k

(2π)3
Pδ(k)α2

l (k, ν)

αl(k, ν) =

∫

drWr0
(r)

dTb

dδH
(r)jl(kr). (165)

Our calculation ignores inhomogeneities in the hydrogen ionization fraction,
since they freeze at the earlier recombination epoch (z ∼ 103) and so their
amplitude is more than an order of magnitude smaller than δH at z < 100.
The gravitational potential perturbations induce a redshift distortion effect
that is of order ∼ (H/ck)2 smaller than δH for the high–l modes of interest
here.

Fig. 55. Angular power spectrum of 21cm anisotropies on the sky at various red-
shifts. From top to bottom, z = 55, 40, 80, 30, 120, 25, 170.

Figure 55 shows the angular power spectrum at various redshifts. The sig-
nal peaks around z ∼ 50 but maintains a substantial amplitude over the full
range of 30 < z < 100. The ability to probe the small scale power of density
fluctuations is only limited by the Jeans scale, below which the dark matter
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inhomogeneities are washed out by the finite pressure of the gas. Interestingly,
the cosmological Jeans mass reaches its minimum value, ∼ 3×104M⊙, within
the redshift interval of interest here which corresponds to modes of angular
scale ∼ arcsecond on the sky. During the epoch of reionization, photoionization
heating raises the Jeans mass by several orders of magnitude and broadens
spectral features, thus limiting the ability of other probes of the intergalactic
medium, such as the Lyα forest, from accessing the same very low mass scales.
The 21cm tomography has the additional advantage of probing the majority
of the cosmic gas, instead of the trace amount (∼ 10−5) of neutral hydrogen
probed by the Lyα forest after reionization. Similarly to the primary CMB
anisotropies, the 21cm signal is simply shaped by gravity, adiabatic cosmic ex-
pansion, and well-known atomic physics, and is not contaminated by complex
astrophysical processes that affect the intergalactic medium at z < 30.

Characterizing the initial fluctuations is one of the primary goals of ob-
servational cosmology, as it offers a window into the physics of the very early
Universe, namely the epoch of inflation during which the fluctuations are be-
lieved to have been produced. In most models of inflation, the evolution of the
Hubble parameter during inflation leads to departures from a scale-invariant
spectrum that are of order 1/Nefold with Nefold ∼ 60 being the number of
e–folds between the time when the scale of our horizon was of order the hori-
zon during inflation and the end of inflation [218]. Hints that the standard
ΛCDM model may have too much power on galactic scales have inspired sev-
eral proposals for suppressing the power on small scales. Examples include
the possibility that the dark matter is warm and it decoupled while being
relativistic so that its free streaming erased small-scale power [48], or direct
modifications of inflation that produce a cut-off in the power on small scales
[192]. An unavoidable collisionless component of the cosmic mass budget be-
yond CDM, is provided by massive neutrinos (see [198] for a review). Particle
physics experiments established the mass splittings among different species
which translate into a lower limit on the fraction of the dark matter accounted
for by neutrinos of fν > 0.3%, while current constraints based on galaxies as
tracers of the small scale power imply fν < 12% [360].

Figure 56 shows the 21cm power spectrum for various models that differ
in their level of small scale power. It is clear that a precise measurement of
the 21cm power spectrum will dramatically improve current constraints on
alternatives to the standard ΛCDM spectrum.

The 21cm signal contains a wealth of information about the initial fluc-
tuations. A full sky map at a single photon frequency measured up to lmax,
can probe the power spectrum up to kmax ∼ (lmax/104)Mpc−1. Such a map
contains l2max independent samples. By shifting the photon frequency, one
may obtain many independent measurements of the power. When measur-
ing a mode l, which corresponds to a wavenumber k ∼ l/r, two maps at
different photon frequencies will be independent if they are separated in
radial distance by 1/k. Thus, an experiment that covers a spatial range
∆r can probe a total of k∆r ∼ l∆r/r independent maps. An experiment
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Fig. 56. Upper panel: Power spectrum of 21cm anisotropies at z = 55 for a ΛCDM
scale-invariant power spectrum, a model with n = 0.98, a model with n = 0.98 and
αr ≡ 1

2
(d2 ln P/d ln k2) = −0.07, a model of warm dark matter particles with a mass

of 1 keV, and a model in which fν = 10% of the matter density is in three species
of massive neutrinos with a mass of 0.4 eV each. Lower panel: Ratios between the
different power spectra and the scale-invariant spectrum.

that detects the 21cm signal over a range ∆ν centered on a frequency ν,
is sensitive to ∆r/r ∼ 0.5(∆ν/ν)(1 + z)−1/2, and so it measures a total of
N21cm ∼ 3 × 1016(lmax/106)3(∆ν/ν)(z/100)−1/2 independent samples.

This detection capability cannot be reproduced even remotely by other
techniques. For example, the primary CMB anisotropies are damped on small
scales (through the so-called Silk damping), and probe only modes with l ≤
3000 (k ≤ 0.2 Mpc−1). The total number of modes available in the full sky
is Ncmb = 2l2max ∼ 2 × 107(lmax/3000)2, including both temperature and
polarization information.

The sensitivity of an experiment depends strongly on its particular design,
involving the number and distribution of the antennae for an interferometer.
Crudely speaking, the uncertainty in the measurement of [l(l + 1)Cl/2π]1/2 is
dominated by noise, Nν , which is controlled by the sky brightness Iν at the
observed frequency ν [404],

Nν ∼ 0.4mK

(

Iν [50MHz]

5 × 105Jy sr−1

)(

lmin

35

)(

5000

lmax

)(

0.016

fcover

)

×
(

1 year

t0

)1/2(
∆ν

50MHz

)−1/2 (
50 MHz

ν

)2.5

, (166)

where lmin is the minimum observable l as determined by the field of view
of the instruments, lmax is the maximum observable l as determined by the
maximum separation of the antennae, fcover is the fraction of the array area
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thats is covered by telescopes, t0 is the observation time and ∆ν is the fre-
quency range over which the signal can be detected. Note that the assumed
sky temperature of 0.7 × 104K at ν = 50MHz (corresponding to z ∼ 30) is
more than six orders of magnitude larger than the signal. We have already
included the fact that several independent maps can be produced by varying
the observed frequency. The numbers adopted above are appropriate for the
inner core of the LOFAR array (http://www.lofar.org), planned for initial op-
eration in 2006. The predicted signal is ∼ 1mK, and so a year of integration
or an increase in the covering fraction are required to observe it with LOFAR.
Other experiments whose goal is to detect 21cm fluctuations from the sub-
sequent epoch of reionization at z ∼ 6 − 12 (when ionized bubbles exist and
the fluctuations are larger) include the Mileura Wide-Field Array (MWA;
http://web.haystack.mit.edu/arrays/MWA/), the Primeval Structure Tele-
scope (PAST; http://arxiv.org/abs/astro-ph/0502029), and in the more dis-
tant future the Square Kilometer Array (SKA; http://www.skatelescope.org).
The main challenge in detecting the predicted signal from higher redshifts
involves its appearance at low frequencies where the sky noise is high. Pro-
posed space-based instruments [194] avoid the terrestrial radio noise and the
increasing atmospheric opacity at ν < 20 MHz (corresponding to z > 70).

Fig. 57. Prototype of the tile design for the Mileura Wide-Field Array (MWA) in
western Australia, aimed at detecting redshifted 21cm from the epoch of reionization.
Each 4m×4m tile contains 16 dipole antennas operating in the frequency range of
80–300MHz. Altogether the initial phase of MWA (the so-called “Low-Frequency
Demostrator”) will include 500 antenna tiles with a total collecting area of 8000 m2

at 150MHz, scattered across a 1.5 km region and providing an angular resolution of
a few arcminutes.

The 21cm absorption is replaced by 21cm emission from neutral hydrogen
as soon as the intergalactic medium is heated above the CMB temperature
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by X-ray sources during the epoch of reionization [88]. This occurs long be-
fore reionization since the required heating requires only a modest amount
of energy, ∼ 10−2 eV[(1 + z)/30], which is three orders of magnitude smaller
than the amount necessary to ionize the Universe. As demonstrated by Chen
& Miralda-Escude (2004) [88], heating due the recoil of atoms as they absorb
Lyα photons [237] is not effective; the Lyα color temperature reaches equi-
librium with the gas kinetic temperature and suppresses subsequent heating
before the level of heating becomes substantial. Once most of the cosmic hy-
drogen is reionized at zreion, the 21cm signal is diminished. The optical depth
for free-free absorption after reionization, ∼ 0.1[(1 + zreion)/20]5/2, modifies
only slightly the expected 21cm anisotropies. Gravitational lensing should
modify the power spectrum [287] at high l, but can be separated as in stan-
dard CMB studies (see [326] and references therein). The 21cm signal should
be simpler to clean as it includes the same lensing foreground in independent
maps obtained at different frequencies.

The large number of independent modes probed by the 21cm signal would

provide a measure of non-Gaussian deviations to a level of ∼ N
−1/2
21cm , consti-

tuting a test of the inflationary origin of the primordial inhomogeneities which
are expected to possess deviations > 10−6 [245].

9.2 The Characteristic Observed Size of Ionized Bubbles at the
End of Reionization

The first galaxies to appear in the Universe at redshifts z > 20 created ion-
ized bubbles in the intergalactic medium (IGM) of neutral hydrogen (H I )
left over from the Big-Bang. It is thought that the ionized bubbles grew with
time, surrounded clusters of dwarf galaxies[67, 143] and eventually overlapped
quickly throughout the Universe over a narrow redshift interval near z ∼ 6.
This event signaled the end of the reionization epoch when the Universe was
a billion years old. Measuring the unknown size distribution of the bubbles
at their final overlap phase is a focus of forthcoming observational programs
aimed at highly redshifted 21cm emission from atomic hydrogen. In this sub-
section we follow Wyithe & Loeb (2004) [399] and show that the combined
constraints of cosmic variance and causality imply an observed bubble size at
the end of the overlap epoch of ∼ 10 physical Mpc, and a scatter in the ob-
served redshift of overlap along different lines-of-sight of ∼ 0.15. This scatter
is consistent with observational constraints from recent spectroscopic data on
the farthest known quasars. This result implies that future radio experiments
should be tuned to a characteristic angular scale of ∼ 0.5◦ and have a mini-
mum frequency band-width of ∼ 8 MHz for an optimal detection of 21cm flux
fluctuations near the end of reionization.

During the reionization epoch, the characteristic bubble size (defined here
as the spherically averaged mean radius of the H II regions that contain most
of the ionized volume[143]) increased with time as smaller bubbles combined
until their overlap completed and the diffuse IGM was reionized. However the
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Fig. 58. Schematic sketch of the evolution of the kinetic temperature (Tk) and
spin temperature (Ts) of cosmic hydrogen. Following cosmological recombination at
z ∼ 103, the gas temperature (orange curve) tracks the CMB temperature (blue
line; Tγ ∝ (1 + z)) down to z ∼ 200 and then declines below it (Tk ∝ (1 + z)2)
until the first X-ray sources (accreting black holes or exploding supernovae) heat it
up well above the CMB temperature. The spin temperature of the 21cm transition
(red curve) interpolates between the gas and CMB temperatures. Initially it tracks
the gas temperature through collisional coupling; then it tracks the CMB through
radiative coupling; and eventually it tracks the gas temperature once again after
the production of a cosmic background of UV photons between the Lyα and the
Lyman-limit frequencies that redshift or cascade into the Lyα resonance (through
the Wouthuysen-Field effect [Wouthuysen 1952 [388]; Field 1959 [131]]). Parts of the
curve are exaggerated for pedagogic purposes. The exact shape depends on astro-
physical details about the first galaxies, such as their production of X-ray binaries,
supernovae, nuclear accreting black holes, and their generation of relativistic elec-
trons in collisionless shocks which produce UV and X-ray photons through inverse-
Compton scattering of CMB photons.

largest size of isolated bubbles (fully surrounded by H I boundaries) that can
be observed is finite, because of the combined phenomena of cosmic variance
and causality. Figure 61 presents a schematic illustration of the geometry.
There is a surface on the sky corresponding to the time along different lines-
of-sight when the diffuse (uncollapsed) IGM was most recently neutral. We
refer to it as the Surface of Bubble Overlap (SBO). There are two competing
sources for fluctuations in the SBO, each of which is dependent on the char-
acteristic size, RSBO, of the ionized regions just before the final overlap. First,
the finite speed of light implies that 21cm photons observed from different
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Fig. 59. 21cm imaging of ionized bubbles during the epoch of reionization is anal-
ogous to slicing swiss cheese. The technique of slicing at intervals separated by the
typical dimension of a bubble is optimal for revealing different pattens in each slice.

points along the curved boundary of an H II region must have been emitted
at different times during the history of the Universe. Second, bubbles on a
comoving scale R achieve reionization over a spread of redshifts due to cosmic
variance in the initial conditions of the density field smoothed on that scale.
The characteristic scale of H II bubbles grows with time, leading to a decline
in the spread of their formation redshifts[67] as the cosmic variance is averaged
over an increasing spatial volume. However the 21cm light-travel time across
a bubble rises concurrently. Suppose a signal 21cm photon which encodes the
presence of neutral gas, is emitted from the far edge of the ionizing bubble.
If the adjacent region along the line-of-sight has not become ionized by the
time this photon reaches the near side of the bubble, then the photon will en-
counter diffuse neutral gas. Other photons emitted at this lower redshift will
therefore also encode the presence of diffuse neutral gas, implying that the
first photon was emitted prior to overlap, and not from the SBO. Hence the
largest observable scale of H II regions when their overlap completes, corre-
sponds to the first epoch at which the light crossing time becomes larger than
the spread in formation times of ionized regions. Only then will the signal
photon leaving the far side of the HII region have the lowest redshift of any
signal photon along that line-of-sight.

The observed spectra of some quasars beyond z ∼ 6.1 show a Gunn-
Peterson trough[163, 127] (Fan et al. 2005 [128]), a blank spectral region at
wavelengths shorter than Lyα at the quasar redshift, implying the presence
of H I in the diffuse IGM. The detection of Gunn-Peterson troughs indicates
a rapid change[126, 288, 381] in the neutral content of the IGM at z ∼ 6,
and hence a rapid change in the intensity of the background ionizing flux.
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Fig. 60. Spectra of 19 quasars with redshifts 5.74 < z < 6.42 from the Sloan Digital
Sky Survey [128]. For some of the highest-redshift quasars, the spectrum shows no
transmitted flux shortward of the Lyα wavelength at the quasar redshift (the so-
called “Gunn-Peterson trough”), indicating a non-negligible neutral fraction in the
IGM (see the analysis of Fan et al. [128] for details).

This rapid change implies that overlap, and hence the reionization epoch,
concluded near z ∼ 6. The most promising observational probe[404, 259] of the
reionization epoch is redshifted 21cm emission from intergalactic H I . Future
observations using low frequency radio arrays (e.g. LOFAR, MWA, and PAST)
will allow a direct determination of the topology and duration of the phase of
bubble overlap. In this section we determine the expected angular scale and
redshift width of the 21cm fluctuations at the SBO theoretically, and show
that this determination is consistent with current observational constraints.

We start by quantifying the constraints of causality and cosmic variance.
First suppose we have an H II region with a physical radius R/(1 + 〈z〉). For
a 21cm photon, the light crossing time of this radius is

〈∆z2〉1/2 =

∣

∣

∣

∣

dz

dt

∣

∣

∣

∣

〈z〉

R

c(1 + 〈z〉) , (167)

where at the high-redshifts of interest (dz/dt) = −(H0

√
Ωm)(1+z)5/2. Here, c

is the speed of light, H0 is the present-day Hubble constant, Ωm is the present
day matter density parameter, and 〈z〉 is the mean redshift of the SBO. Note
that when discussing this crossing time, we are referring to photons used to
probe the ionized bubble (e.g. at 21cm), rather than photons involved in the
dynamics of the bubble evolution.

Second, overlap would have occurred at different times in different regions
of the IGM due to the cosmic scatter in the process of structure formation
within finite spatial volumes[67]. Reionization should be completed within
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a region of comoving radius R when the fraction of mass incorporated into
collapsed objects in this region attains a certain critical value, corresponding
to a threshold number of ionizing photons emitted per baryon. The ionization
state of a region is governed by the enclosed ionizing luminosity, by its over-
density, and by dense pockets of neutral gas that are self shielding to ionizing
radiation. There is an offset [67] δz between the redshift when a region of
mean over-density δ̄R achieves this critical collapsed fraction, and the redshift
z̄ when the Universe achieves the same collapsed fraction on average. This
offset may be computed[67] from the expression for the collapsed fraction[52]
Fcol within a region of over-density δ̄R on a comoving scale R,

Fcol(Mmin) = erfc





δc − δ̄R
√

2[σ2
Rmin

− σ2
R]



→ δz

(1 + z̄)
=

δ̄R

δc(z̄)
−
[

1 −
√

1 − σ2
R

σ2
Rmin

]

,

(168)
where δc(z̄) ∝ (1+ z̄) is the collapse threshold for an over-density at a redshift
z̄; σR and σRmin

are the variances in the power-spectrum linearly extrapolated
to z = 0 on comoving scales corresponding to the region of interest and to
the minimum galaxy mass Mmin, respectively. The offset in the ionization
redshift of a region depends on its linear over-density, δ̄R. As a result, the
distribution of offsets, and therefore the scatter in the SBO may be obtained
directly from the power spectrum of primordial inhomogeneities. As can be
seen from equation (168), larger regions have a smaller scatter due to their
smaller cosmic variance.

Note that equation (168) is independent of the critical value of the col-
lapsed fraction required for reionization. Moreover, our numerical constraints
are very weakly dependent on the minimum galaxy mass, which we choose
to have a virial temperature of 104K corresponding to the cooling threshold
of primordial atomic gas. The growth of an H II bubble around a cluster
of sources requires that the mean-free-path of ionizing photons be of order
the bubble radius or larger. Since ionizing photons can be absorbed by dense
pockets of neutral gas inside the H II region, the necessary increase in the
mean-free-path with time implies that the critical collapsed fraction required
to ionize a region of size R increases as well. This larger collapsed fraction af-
fects the redshift at which the region becomes ionized, but not the scatter in
redshifts from place to place which is the focus of this sub-section. Our results
are therefore independent of assumptions about unknown quantities such as
the star formation efficiency and the escape fraction of ionizing photons from
galaxies, as well as unknown processes of feedback in galaxies and clumping
of the IGM.

Figure 62 displays the above two fundamental constraints. The causality
constraint (Eq. 167) is shown as the blue line, giving a longer crossing time
for a larger bubble size. This contrasts with the constraint of cosmic variance
(Eq. 168), indicated by the red line, which shows how the scatter in formation
times decreases with increasing bubble size. The scatter in the SBO redshift
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and the corresponding fluctuation scale of the SBO are given by the intersec-
tion of these curves. We find that the thickness of the SBO is 〈∆z2〉1/2 ∼ 0.13,
and that the bubbles which form the SBO have a characteristic comoving size
of ∼ 60Mpc (equivalent to 8.6 physical Mpc). At z ∼ 6 this size corresponds
to angular scales of θSBO ∼ 0.4 degrees on the sky.

A scatter of ∼ 0.15 in the SBO is somewhat larger than the value ex-
tracted from existing numerical simulations[152, 402]. The difference is most
likely due to the limited size of the simulated volumes; while the simulations
appropriately describe the reionization process within limited regions of the
Universe, they are not sufficiently large to describe the global properties of the
overlap phase[67]. The scales over which cosmological radiative transfer has
been simulated are smaller than the characteristic extent of the SBO, which
we find to be RSBO ∼ 70 comoving Mpc.

We can constrain the scatter in the SBO redshift observationally using
the spectra of the highest redshift quasars. Since only a trace amount of neu-
tral hydrogen is needed to absorb Lyα photons, the time where the IGM
becomes Lyα transparent need not coincide with bubble overlap. Following
overlap the IGM was exposed to ionizing sources in all directions and the
ionizing intensity rose rapidly. After some time the ionizing background flux
was sufficiently high that the H I fraction fell to a level at which the IGM
allowed transmission of resonant Lyα photons. This is shown schematically
in Figure 61. The lower wavelength limit of the Gunn-Peterson trough corre-
sponds to the Lyα wavelength at the redshift when the IGM started to allow
transmission of Lyα photons along that particular line-of-sight. In addition
to the SBO we therefore also define the Surface of Lyα Transmission (here-
after SLT) as the redshift along different lines-of-sight when the diffuse IGM
became transparent to Lyα photons.

The scatter in the SLT redshift is an observable which we would like to
compare with the scatter in the SBO redshift. The variance of the density
field on large scales results in the biased clustering of sources[67]. H II regions
grow in size around these clusters of sources. In order for the ionizing photons
produced by a cluster to advance the walls of the ionized bubble around
it, the mean-free-path of these photons must be of order the bubble size or
larger. After bubble overlap, the ionizing intensity at any point grows until
the ionizing photons have time to travel across the scale of the new mean-free-
path, which represents the horizon out to which ionizing sources are visible.
Since the mean-free-path is larger than RSBO, the ionizing intensity at the
SLT averages the cosmic scatter over a larger volume than at the SBO. This
constraint implies that the cosmic variance in the SLT redshift must be smaller
than the scatter in the SBO redshift. However, it is possible that opacity from
small-scale structure contributes additional scatter to the SLT redshift.

If cosmic variance dominates the observed scatter in the SLT redshift,
then based on the spectra of the three z > 6.1 quasars[127, 381] we would

expect the scatter in the SBO redshift to satisfy 〈∆z2〉1/2
obs > 0.05. In addition,

analysis of the proximity effect for the size of the H II regions around the two
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highest redshift quasars[396, 251] implies a neutral fraction that is of order
unity (i.e. pre-overlap) at z ∼ 6.2−6.3, while the transmission of Lyα photons
at z < 6 implies that overlap must have completed by that time. This restricts

the scatter in the SBO to be 〈∆z2〉1/2
obs < 0.25. The constraints on values for

the scatter in the SBO redshift are shaded gray in Figure 62. It is reassuring

that the theoretical prediction for the SBO scatter of 〈∆z2〉1/2
obs ∼ 0.15, with a

characteristic scale of ∼ 70 comoving Mpc, is bounded by these constraints.
The possible presence of a significantly neutral IGM just beyond the red-

shift of overlap[396, 251] is encouraging for upcoming 21cm studies of the
reionization epoch as it results in emission near an observed frequency of 200
MHz where the signal is most readily detectable. Future observations of red-
shifted 21cm line emission at 6 < z < 6.5 with instruments such as LOFAR,
MWA, and PAST, will be able to map the three-dimensional distribution of HI
at the end of reionization. The intergalactic H II regions will imprint a ’knee’
in the power-spectrum of the 21cm anisotropies on a characteristic angular
scale corresponding to a typical isolated H II region[404]. Our results sug-
gest that this characteristic angular scale is large at the end of reionization,
θSBO ∼ 0.5 degrees, motivating the construction of compact low frequency
arrays. An SBO thickness of 〈∆z2〉1/2 ∼ 0.15 suggests a minimum frequency
band-width of ∼ 8 MHz for experiments aiming to detect anisotropies in 21cm
emission just prior to overlap. These results will help guide the design of the
next generation of low-frequency radio observatories in the search for 21cm
emission at the end of the reionization epoch.

The full size distribution of ionized bubbles has to be calculated from a
numerical cosmological simulation that includes gas dynamics and radiative
transfer. The simulation box needs to be sufficiently large for it to sample an
unbiased volume of the Universe with little cosmic variance, but at the same
time one must resolve the scale of individual dwarf galaxies which provide (as
well as consume) ionizing photons (see discussion at the last section of this
review). Until a reliable simulation of this magnitude exists, one must adopt
an approximate analytic approach to estimate the bubble size distribution.
Below we describe an example for such a method, developed by Furlanetto,
Zaldarriaga, & Hernquist (2004) [143].

The criterion for a region to be ionized is that galaxies inside of it produce
a sufficient number of ionizing photons per baryon. This condition can be
translated to the requirement that the collapsed fraction of mass in halos above
some threshold mass Mmin will exceed some threshold, namely Fcol > ζ−1.
The minimum halo mass most likely corresponds to a virial temperature of
104K relating to the threshold for atomic cooling (assuming that molecular
hydrogen cooling is suppressed by the UV background in the Lyman-Werner
band). We would like to find the largest region around every point that satisfies
the above condition on the collapse fraction and then calculate the abundance
of ionized regions of this size. Different regions have different values of Fcol

because their mean density is different. In the extended Press-Schechter model
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Fig. 61. The distances to the observed Surface of Bubble Overlap (SBO) and Surface
of Lyα Transmission (SLT) fluctuate on the sky. The SBO corresponds to the first
region of diffuse neutral IGM observed along a random line-of-sight. It fluctuates
across a shell with a minimum width dictated by the condition that the light crossing
time across the characteristic radius RSBO of ionized bubbles equals the cosmic
scatter in their formation times. Thus, causality and cosmic variance determine
the characteristic scale of bubbles at the completion of bubble overlap. After some
time delay the IGM becomes transparent to Lyα photons, resulting in a second
surface, the SLT. The upper panel illustrates how the lines-of-sight towards two
quasars (Q1 in red and Q2 in blue) intersect the SLT with a redshift difference
δz. The resulting variation in the observed spectrum of the two quasars is shown
in the lower panel. Observationally, the ensemble of redshifts down to which the
Gunn-Peterson troughs are seen in the spectra of z > 6.1 quasars is drawn from the
probability distribution dP/dzSLT for the redshift at which the IGM started to allow
Lyα transmission along random lines-of-sight. The observed values of zSLT show a
small scatter[127] in the SLT redshift around an average value of 〈zSLT〉 ≈ 5.95.
Some regions of the IGM may have also become transparent to Lyα photons prior to
overlap, resulting in windows of transmission inside the Gunn-Peterson trough (one
such region may have been seen[381] in SDSS J1148+5251). In the existing examples,
the portions of the Universe probed by the lower end of the Gunn-Peterson trough
are located several hundred comoving Mpc away from the background quasar, and
are therefore not correlated with the quasar host galaxy. The distribution dP/dzSLT

is also independent of the redshift distribution of the quasars. Moreover, lines-of-
sight to these quasars are not causally connected at z ∼ 6 and may be considered
independent.
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theoretical

observationally
allowed

prediction

Fig. 62. Constraints on the scatter in the SBO redshift and the characteristic size of
isolated bubbles at the final overlap stage, RSBO (see Fig. 1). The characteristic size
of H II regions grows with time. The SBO is observed for the bubble scale at which
the light crossing time (blue line) first becomes smaller than the cosmic scatter in
bubble formation times (red line). At z ∼ 6, the implied scale RSBO ∼ 60 comoving
Mpc (or ∼ 8.6 physical Mpc), corresponds to a characteristic angular radius of
θSLT ∼ 0.4 degrees on the sky. After bubble overlap, the ionizing intensity grows to a
level at which the IGM becomes transparent to Lyα photons. The collapsed fraction
required for Lyα transmission within a region of a certain size will be larger than
required for its ionization. However, the scatter in equation (168) is not sensitive to
the collapsed fraction, and so may be used for both the SBO and SLT. The scatter
in the SLT is smaller than the cosmic scatter in the structure formation time on
the scale of the mean-free-path for ionizing photons. This mean-free-path must be
longer than RSBO ∼ 60Mpc, an inference which is supported by analysis of the Lyα
forest at z ∼ 4 where the mean-free-path is estimated[257] to be ∼ 120 comoving
Mpc at the Lyman limit (and longer at higher frequencies). If it is dominated by
cosmic variance, then the scatter in the SLT redshift provides a lower limit to the
SBO scatter. The three known quasars at z > 6.1 have Lyα transmission redshifts
of[381, 127] zSLT = 5.9, 5.95 and 5.98, implying that the scatter in the SBO must
be > 0.05 (this scatter may become better known from follow-up spectroscopy of
Gamma Ray Burst afterglows at z > 6 that might be discovered by the SWIFT
satellite[26, 61]). The observed scatter in the SLT redshift is somewhat smaller
than the predicted SBO scatter, confirming the expectation that cosmic variance is
smaller at the SLT. The scatter in the SBO redshift must also be < 0.25 because the
lines-of-sight to the two highest redshift quasars have a redshift of Lyα transparency
at z ∼ 6, but a neutral fraction that is known from the proximity effect[396] to be
substantial at z > 6.2 − 6.3. The excluded regions of scatter for the SBO are shown
in gray.



First Light 129

(Bond et al. 1991 [52]; Lacey & Cole 1993 [212]), the collapse fraction in a
region of mean overdensity δM is

Fcol = erfc

(

δc − δM
√

2[σ2
min − σ2(M, z)]

)

. (169)

where σ2(M, z) is the variance of density fluctuations on mass scale M , σ2
min ≡

σ2(Mmin, z), and δc is the collapse threshold. This equation can be used to
derive the condition on the mean overdensity within a region of mass M in
order for it to be ionized,

δM > δB(M, z) ≡ δc −
√

2K(ζ)[σ2
min − σ2(M, z)]1/2, (170)

where K(ζ) = erfc−1(1−ζ−1). Furlanetto et al. [143] showed how to construct
the mass function of ionized regions from δB in analogy with the halo mass
function (Press & Schechter 1974 [291]; Bond et al. 1991 [52]). The barrier in
equation (170) is well approximated by a linear dependence on σ2,

δB ≈ B(M) = B0 + B1σ
2(M), (171)

in which case the mass function has an analytic solution (Sheth 1998 [332]),

n(M) =

√

2

π

ρ̄

M2

∣

∣

∣

∣

d lnσ

d lnM

∣

∣

∣

∣

B0

σ(M)
exp

[

− B2(M)

2σ2(M)

]

, (172)

where ρ̄ is the mean mass density. This solution provides the comoving number
density of ionized bubbles with mass in the range of (M, M + dM). The main
difference of this result from the Press-Schechter mass function is that the
barrier in this case becomes more difficult to cross on smaller scales because
δB is a decreasing function of mass M . This gives bubbles a characteristic size.
The size evolves with redshift in a way that depends only on ζ and Mmin.

One limitation of the above analytic model is that it ignores the non-
local influence of sources on distant regions (such as voids) as well as the
possible shadowing effect of intervening gas. Radiative transfer effects in the
real Universe are inherently three-dimensional and cannot be fully captured
by spherical averages as done in this model. Moreover, the value of Mmin is
expected to increase in regions that were already ionized, complicating the ex-
pectation of whether they will remain ionized later. The history of reionization
could be complicated and non monotonic in individual regions, as described
by Furlanetto & Loeb (2005) [144]. Finally, the above analytic formalism does
not take the light propagation delay into account as we have done above in
estimating the characteristic bubble size at the end of reionization. Hence this
formalism describes the observed bubbles only as long as the characteristic
bubble size is sufficiently small, so that the light propagation delay can be
neglected compared to cosmic variance. The general effect of the light prop-
agation delay on the power-spectrum of 21cm fluctuations was quantified by
Barkana & Loeb (2005) [29].
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9.3 Separating the “Physics” from the “Astrophysics” of the
Reionization Epoch with 21cm Fluctuations

The 21cm signal can be seen from epochs during which the cosmic gas was
largely neutral and deviated from thermal equilibrium with the cosmic mi-
crowave background (CMB). The signal vanished at redshifts z > 200, when
the residual fraction of free electrons after cosmological recombination kept
the gas kinetic temperature, Tk, close to the CMB temperature, Tγ . But dur-
ing 200 > z > 30 the gas cooled adiabatically and atomic collisions kept the
spin temperature of the hyperfine level population below Tγ , so that the gas
appeared in absorption [323, 226]. As the Hubble expansion continued to rar-
efy the gas, radiative coupling of Ts to Tγ began to dominate and the 21cm
signal faded. When the first galaxies formed, the UV photons they produced
between the Lyα and Lyman limit wavelengths propagated freely through
the Universe, redshifted into the Lyα resonance, and coupled Ts and Tk once
again through the Wouthuysen-Field [388, 131] effect by which the two hy-
perfine states are mixed through the absorption and re-emission of a Lyα
photon [237, 96]. Emission above the Lyman limit by the same galaxies ini-
tiated the process of reionization by creating ionized bubbles in the neutral
cosmic gas, while X-ray photons propagated farther and heated Tk above Tγ

throughout the Universe. Once Ts grew larger than Tγ , the gas appeared in
21cm emission. The ionized bubbles imprinted a knee in the power spectrum
of 21cm fluctuations [404], which traced the H I topology until the process of
reionization was completed [143].

The various effects that determine the 21cm fluctuations can be separated
into two classes. The density power spectrum probes basic cosmological pa-
rameters and inflationary initial conditions, and can be calculated exactly in
linear theory. However, the radiation from galaxies, both Lyα radiation and
ionizing photons, involves the complex, non-linear physics of galaxy forma-
tion and star formation. If only the sum of all fluctuations could be measured,
then it would be difficult to extract the separate sources, and in particular,
the extraction of the power spectrum would be subject to systematic errors in-
volving the properties of galaxies. Barkana & Loeb (2005) [28] showed that the
unique three-dimensional properties of 21cm measurements permit a separa-
tion of these distinct effects. Thus, 21cm fluctuations can probe astrophysical
(radiative) sources associated with the first galaxies, while at the same time
separately probing the physical (inflationary) initial conditions of the Uni-
verse. In order to affect this separation most easily, it is necessary to measure
the three-dimensional power spectrum of 21cm fluctuations. The discussion
in this section follows Barkana & Loeb (2005) [28].
Spin temperature history

As long as the spin-temperature Ts is smaller than the CMB temperature
Tγ = 2.725(1 + z) K, hydrogen atoms absorb the CMB, whereas if Ts > Tγ

they emit excess flux. In general, the resonant 21cm interaction changes the
brightness temperature of the CMB by [323, 237] Tb = τ (Ts − Tγ) /(1 + z),
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where the optical depth at a wavelength λ = 21cm is

τ =
3cλ2hA10nH

32πkTs (1 + z) (dvr/dr)
xHI , (173)

where nH is the number density of hydrogen, A10 = 2.85 × 10−15 s−1 is the
spontaneous emission coefficient, xHI is the neutral hydrogen fraction, and
dvr/dr is the gradient of the radial velocity along the line of sight with vr being
the physical radial velocity and r the comoving distance; on average dvr/dr =
H(z)/(1 + z) where H is the Hubble parameter. The velocity gradient term
arises because it dictates the path length over which a 21cm photon resonates
with atoms before it is shifted out of resonance by the Doppler effect [341].

For the concordance set of cosmological parameters [348], the mean bright-
ness temperature on the sky at redshift z is

Tb = 28 mK

(

Ωbh

.033

)(

Ωm

.27

)− 1

2

[

(1 + z)

10

]1/2 [
(Ts − Tγ)

Ts

]

x̄HI, (174)

where x̄HI is the mean neutral fraction of hydrogen. The spin temperature it-
self is coupled to Tk through the spin-flip transition, which can be excited by
collisions or by the absorption of Lyα photons. As a result, the combination
that appears in Tb becomes [131] (Ts −Tγ)/Ts = [xtot/(1+xtot)] (1 − Tγ/Tk),
where xtot = xα + xc is the sum of the radiative and collisional thresh-
old parameters. These parameters are xα = 4PαT⋆/27A10Tγ and xc =
4κ1−0(Tk)nHT⋆/3A10Tγ , where Pα is the Lyα scattering rate which is propor-
tional to the Lyα intensity, and κ1−0 is tabulated as a function of Tk [11, 406].
The coupling of the spin temperature to the gas temperature becomes sub-
stantial when xtot > 1.
Brightness temperature fluctuations

Although the mean 21cm emission or absorption is difficult to measure due
to bright foregrounds, the unique character of the fluctuations in Tb allows for
a much easier extraction of the signal [154, 404, 259, 260, 314]. We adopt the
notation δA for the fractional fluctuation in quantity A (with a lone δ denoting
density perturbations). In general, the fluctuations in Tb can be sourced by
fluctuations in gas density (δ), Lyα flux (through δxα

) neutral fraction (δxHI
),

radial velocity gradient (δdrvr
), and temperature, so we find

δTb
=

(

1 +
xc

x̃tot

)

δ +
xα

x̃tot
δxα

+ δxHI
− δdrvr

+(γa − 1)

[

Tγ

Tk − Tγ
+

xc

x̃tot

d log(κ1−0)

d log(Tk)

]

δ , (175)

where the adiabatic index is γa = 1 + (δTk
/δ), and we define x̃tot ≡ (1 +

xtot)xtot. Taking the Fourier transform, we obtain the power spectrum of
each quantity; e.g., the total power spectrum PTb

is defined by

〈δ̃Tb
(k1)δ̃Tb

(k2)〉 = (2π)3δD(k1 + k2)PTb
(k1) , (176)
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where δ̃Tb
(k) is the Fourier transform of δTb

, k is the comoving wavevector,
δD is the Dirac delta function, and 〈· · · 〉 denotes an ensemble average. In this
analysis, we consider scales much bigger than the characteristic bubble size
and the early phase of reionization (when ¯δxHI

<< 1), so that the fluctuations
δxHI

are also much smaller than unity. For a more general treatment, see
McQuinn et al. (2005) [250].

The separation of powers
The fluctuation δTb

consists of a number of isotropic sources of fluctua-
tions plus the peculiar velocity term −δdrvr

. Its Fourier transform is simply
proportional to that of the density field [191, 41],

δ̃drvr
= −µ2δ̃, (177)

where µ = cos θk in terms of the angle θk of k with respect to the line of
sight. The µ2 dependence in this equation results from taking the radial (i.e.,
line-of-sight) component (∝ µ) of the peculiar velocity, and then the radial
component (∝ µ) of its gradient. Intuitively, a high-density region possesses a
velocity infall towards the density peak, implying that a photon must travel
further from the peak in order to reach a fixed relative redshift, compared with
the case of pure Hubble expansion. Thus the optical depth is always increased
by this effect in regions with δ > 0. This phenomenon is most properly termed
velocity compression.

We therefore write the fluctuation in Fourier space as

δ̃Tb
(k) = µ2δ̃(k) + βδ̃(k) + δ̃rad(k) , (178)

where we have defined a coefficient β by collecting all terms ∝ δ in Eq. (175),
and have also combined the terms that depend on the radiation fields of
Lyα photons and ionizing photons, respectively. We assume that these ra-
diation fields produce isotropic power spectra, since the physical processes
that determine them have no preferred direction in space. The total power
spectrum is

PTb
(k) = µ4Pδ(k) + 2µ2[βPδ(k) + Pδ·rad(k)] +

[β2Pδ(k) + Prad(k) + 2βPδ·rad(k)] , (179)

where we have defined the power spectrum Pδ·rad as the Fourier transform of
the cross-correlation function,

ξδ·rad(r) = 〈δ(r1) δrad(r1 + r)〉 . (180)

We note that a similar anisotropy in the power spectrum has been pre-
viously derived in a different context, i.e., where the use of galaxy redshifts
to estimate distances changes the apparent line-of-sight density of galaxies in
redshift surveys [191, 219, 178, 133]. However, galaxies are intrinsically com-
plex tracers of the underlying density field, and in that case there is no analog
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to the method that we demonstrate below for separating in 21cm fluctuations
the effect of initial conditions from that of later astrophysical processes.

The velocity gradient term has also been examined for its global effect on
the sky-averaged power and on radio visibilities [366, 41]. The other sources
of 21cm perturbations are isotropic and would produce a power spectrum
PTb

(k) that could be measured by averaging the power over spherical shells
in k space. In the simple case where β = 1 and only the density and velocity
terms contribute, the velocity term increases the total power by a factor of
〈(1 + µ2)2〉 = 1.87 in the spherical average. However, instead of averaging
the signal, we can use the angular structure of the power spectrum to greatly
increase the discriminatory power of 21cm observations. We may break up each
spherical shell in k space into rings of constant µ and construct the observed
PTb

(k, µ). Considering Eq. (179) as a polynomial in µ, i.e., µ4Pµ4+µ2Pµ2+Pµ0 ,
we see that the power at just three values of µ is required in order to separate
out the coefficients of 1, µ2, and µ4 for each k.

If the velocity compression were not present, then only the µ-independent
term (times T 2

b ) would have been observed, and its separation into the five
components (Tb, β, and three power spectra) would have been difficult and
subject to degeneracies. Once the power has been separated into three parts,
however, the µ4 coefficient can be used to measure the density power spec-
trum directly, with no interference from any other source of fluctuations.
Since the overall amplitude of the power spectrum, and its scaling with
redshift, are well determined from the combination of the CMB tempera-
ture fluctuations and galaxy surveys, the amplitude of Pµ4 directly deter-
mines the mean brightness temperature Tb on the sky, which measures a
combination of Ts and x̄HI at the observed redshift. McQuinn et al. (2005)
[250] analysed in detail the parameters that can be constrained by upcom-
ing 21cm experiments in concert with future CMB experiments such as
Planck (http://www.rssd.esa.int/index.php?project=PLANCK). Once Pδ(k)
has been determined, the coefficients of the µ2 term and the µ-independent
term must be used to determine the remaining unknowns, β, Pδ·rad(k), and
Prad(k). Since the coefficient β is independent of k, determining it and thus
breaking the last remaining degeneracy requires only a weak additional as-
sumption on the behavior of the power spectra, such as their asymptotic
behavior at large or small scales. If the measurements cover Nk values of
wavenumber k, then one wishes to determine 2Nk +1 quantities based on 2Nk

measurements, which should not cause significant degeneracies when Nk ≫ 1.
Even without knowing β, one can probe whether some sources of Prad(k)
are uncorrelated with δ; the quantity Pun−δ(k) ≡ Pµ0 − P 2

µ2/(4Pµ4) equals

Prad − P 2
δ·rad/Pδ, which receives no contribution from any source that is a

linear functional of the density distribution (see the next subsection for an
example).
Specific epochs

At z ∼ 35, collisions are effective due to the high gas density, so one can
measure the density power spectrum [226] and the redshift evolution of nHI,
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Tγ , and Tk. At z < 35, collisions become ineffective but the first stars pro-
duce a cosmic background of Lyα photons (i.e. photons that redshift into the
Lyα resonance) that couples Ts to Tk. During the period of initial Lyα cou-
pling, fluctuations in the Lyα flux translate into fluctuations in the 21cm
brightness [30]. This signal can be observed from z ∼ 25 until the Lyα cou-
pling is completed (i.e., xtot ≫ 1) at z ∼ 15. At a given redshift, each atom
sees Lyα photons that were originally emitted at earlier times at rest-frame
wavelengths between Lyα and the Lyman limit. Distant sources are time re-
tarded, and since there are fewer galaxies in the distant, earlier Universe, each
atom sees sources only out to an apparent source horizon of ∼ 100 comoving
Mpc at z ∼ 20. A significant portion of the flux comes from nearby sources,
because of the 1/r2 decline of flux with distance, and since higher Lyman
series photons, which are degraded to Lyα photons through scattering, can
only be seen from a small redshift interval that corresponds to the wavelength
interval between two consecutive atomic levels.

Fig. 63. Observable power spectra during the period of initial Lyα coupling. Upper
panel: Assumes adiabatic cooling. Lower panel: Assumes pre-heating to 500 K by
X-ray sources. Shown are Pµ4 = Pδ (solid curves), Pµ2 (short-dashed curves), and
Pun−δ (long-dashed curves), as well as for comparison 2βPδ (dotted curves).

There are two separate sources of fluctuations in the Lyα flux [30]. The
first is density inhomogeneities. Since gravitational instability proceeds faster
in overdense regions, the biased distribution of rare galactic halos fluctuates
much more than the global dark matter density. When the number of sources
seen by each atom is relatively small, Poisson fluctuations provide a second
source of fluctuations. Unlike typical Poisson noise, these fluctuations are cor-
related between gas elements at different places, since two nearby elements see
many of the same sources. Assuming a scale-invariant spectrum of primordial
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density fluctuations, and that xα = 1 is produced at z = 20 by galaxies in
dark matter halos where the gas cools efficiently via atomic cooling, Figure
63 shows the predicted observable power spectra. The figure suggests that
β can be measured from the ratio Pµ2/Pµ4 at k > 1 Mpc−1, allowing the
density-induced fluctuations in flux to be extracted from Pµ2 , while only the
Poisson fluctuations contribute to Pun−δ. Each of these components probes
the number density of galaxies through its magnitude, and the distribution
of source distances through its shape. Measurements at k > 100 Mpc−1 can
independently probe Tk because of the smoothing effects of the gas pressure
and the thermal width of the 21cm line.

After Lyα coupling and X-ray heating are both completed, reionization
continues. Since β = 1 and Tk ≫ Tγ , the normalization of Pµ4 directly
measures the mean neutral hydrogen fraction, and one can separately probe
the density fluctuations, the neutral hydrogen fluctuations, and their cross-
correlation.
Fluctuations on large angular scales

Full-sky observations must normally be analyzed with an angular and ra-
dial transform [143, 314, 41], rather than a Fourier transform which is simpler
and yields more directly the underlying 3D power spectrum [259, 260]. The
21cm brightness fluctuations at a given redshift – corresponding to a comov-
ing distance r0 from the observer – can be expanded in spherical harmonics
with expansion coefficients alm(ν), where the angular power spectrum is

Cl(r0) = 〈|alm(ν)|2〉 = 4π

∫

k2dk

2π2

[

G2
l (kr0)Pδ(k) +

2Pδ·rad(k)Gl(kr0)jl(kr0) + Prad(k)j2
l (kr0)

]

, (181)

with Gl(x) ≡ Jl(x) + (β − 1)jl(x) and Jl(x) being a linear combination of
spherical Bessel functions [41].

In an angular transform on the sky, an angle of θ radians translates to a
spherical multipole l ∼ 3.5/θ. For measurements on a screen at a comoving
distance r0, a multipole l normally measures 3D power on a scale of k−1 ∼
θr0 ∼ 35/l Gpc for l ≫ 1, since r0 ∼ 10 Gpc at z > 10. This estimate fails
at l < 100, however, when we consider the sources of 21cm fluctuations. The
angular projection implied in Cl involves a weighted average (Eq. 181) that
favors large scales when l is small, but density fluctuations possess little large-
scale power, and the Cl are dominated by power around the peak of kPδ(k),
at a few tens of comoving Mpc.

Figure 64 shows that for density and velocity fluctuations, even the l = 1
multipole is affected by power at k−1 > 200 Mpc only at the 2% level. Due to
the small number of large angular modes available on the sky, the expectation
value of Cl cannot be measured precisely at small l. Figure 64 shows that
this precludes new information from being obtained on scales k−1 > 130 Mpc
using angular structure at any given redshift. Fluctuations on such scales may
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Fig. 64. Effect of large-scale power on the angular power spectrum of 21cm
anisotropies on the sky. This example shows the power from density fluctuations
and velocity compression, assuming a warm IGM at z = 12 with Ts = Tk ≫ Tγ .
Shown is the % change in Cl if we were to cut off the power spectrum above 1/k of
200, 180, 160, 140, 120, and 100 Mpc (top to bottom). Also shown for comparison
is the cosmic variance for averaging in bands of ∆l ∼ l (dashed lines).

be measurable using a range of redshifts, but the required ∆z > 1 at z ∼ 10
implies significant difficulties with foreground subtraction and with the need
to account for time evolution.

10 Major Challenge for Future Theoretical Research:

radiative transfer during reionization requires a large dynamic

range, challenging the capabilities of existing simulation codes

Observations of the cosmic microwave background [348] have confirmed the
notion that the present large-scale structure in the Universe originated from
small-amplitude density fluctuations at early cosmic times. Due to the natural
instability of gravity, regions that were denser than average collapsed and
formed bound halos, first on small spatial scales and later on larger and larger
scales. At each snapshot of this cosmic evolution, the abundance of collapsed
halos, whose masses are dominated by cold dark matter, can be computed
from the initial conditions using numerical simulations and can be understood
using approximate analytic models [292, 52]. The common understanding of
galaxy formation is based on the notion that the constituent stars formed out
of the gas that cooled and subsequently condensed to high densities in the
cores of some of these halos [379].

The standard analytic model for the abundance of halos [292, 52] considers
the small density fluctuations at some early, initial time, and attempts to
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predict the number of halos that will form at some later time corresponding
to a redshift z. First, the fluctuations are extrapolated to the present time
using the growth rate of linear fluctuations, and then the average density
is computed in spheres of various sizes. Whenever the overdensity (i.e., the
density perturbation in units of the cosmic mean density) in a sphere rises
above a critical threshold δc(z), the corresponding region is assumed to have
collapsed by redshift z, forming a halo out of all the mass that had been
included in the initial spherical region. In analyzing the statistics of such
regions, the model separates the contribution of large-scale modes from that
of small-scale density fluctuations. It predicts that galactic halos will form
earlier in regions that are overdense on large scales [190, 19, 97, 258], since
these regions already start out from an enhanced level of density, and small-
scale modes need only supply the remaining perturbation necessary to reach
δc(z). On the other hand, large-scale voids should contain a reduced number of
halos at high redshift. In this way, the analytic model describes the clustering
of massive halos.

As gas falls into a dark matter halo, it can fragment into stars only if its
virial temperature is above 104K for cooling mediated by atomic transitions
[or ∼ 500 K for molecular H2 cooling; see Fig. 20]. The abundance of dark
matter halos with a virial temperature above this cooling threshold declines
sharply with increasing redshift due to the exponential cutoff in the abun-
dance of massive halos at early cosmic times. Consequently, a small change
in the collapse threshold of these rare halos, due to mild inhomogeneities on
much larger spatial scales, can change the abundance of such halos dramati-
cally. Barkana & Loeb (2004) [27] have shown that the modulation of galaxy
formation by long wavelength modes of density fluctuations is therefore am-
plified considerably at high redshift; the discussion in this section follows their
analysis.
Amplification of Density Fluctuations

Galaxies at high redshift are believed to form in all halos above some
minimum mass Mmin that depends on the efficiency of atomic and molecular
transitions that cool the gas within each halo. This makes useful the standard
quantity of the collapse fraction Fcol(Mmin), which is the fraction of mass in
a given volume that is contained in halos of individual mass Mmin or greater
(see Fig. 13). If we set Mmin to be the minimum halo mass in which efficient
cooling processes are triggered, then Fcol(Mmin) is the fraction of all baryons
that reside in galaxies. In a large-scale region of comoving radius R with a
mean overdensity δ̄R, the standard result is [52]

Fcol(Mmin) = erfc

[

δc(z) − δ̄R
√

2 [S(Rmin) − S(R)]

]

, (182)

where S(R) = σ2(R) is the variance of fluctuations in spheres of radius R, and
S(Rmin) is the variance in spheres of radius Rmin corresponding to the region
at the initial time that contained a mass Mmin. In particular, the cosmic mean
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value of the collapse fraction is obtained in the limit of R → ∞ by setting
δ̄R and S(R) to zero in this expression. Throughout this section we shall
adopt this standard model, known as the extended Press-Schechter model.
Whenever we consider a cubic region, we will estimate its halo abundance
by applying the model to a spherical region of equal volume. Note also that
we will consistently quote values of comoving distance, which equals physical
distance times a factor of (1 + z).

At high redshift, galactic halos are rare and correspond to high peaks in
the Gaussian probability distribution of initial fluctuations. A modest change
in the overall density of a large region modulates the threshold for high peaks
in the Gaussian density field, so that the number of galaxies is exponentially
sensitive to this modulation. This amplification of large-scale modes is respon-
sible for the large statistical fluctuations that we find.

In numerical simulations, periodic boundary conditions are usually as-
sumed, and this forces the mean density of the box to equal the cosmic mean
density. The abundance of halos as a function of mass is then biased in such a
box (see Fig. 65), since a similar region in the real Universe will have a distri-
bution of different overdensities δ̄R. At high redshift, when galaxies correspond
to high peaks, they are mostly found in regions with an enhanced large-scale
density. In a periodic box, therefore, the total number of galaxies is artificially
reduced, and the relative abundance of galactic halos with different masses is
artificially tilted in favor of lower-mass halos. Let us illustrate these results
for two sets of parameters, one corresponding to the first galaxies and early
reionization (z = 20) and the other to the current horizon in observations
of galaxies and late reionization (z = 7). Let us consider a resolution equal
to that of state-of-the-art cosmological simulations that include gravity and
gas hydrodynamics. Specifically, let us assume that the total number of dark
matter particles in the simulation is N = 3243, and that the smallest halo
that can form a galaxy must be resolved into 500 particles; [349] showed that
this resolution is necessary in order to determine the star formation rate in an
individual halo reliably to within a factor of two. Therefore, if we assume that
halos that cool via molecular hydrogen must be resolved at z = 20 (so that
Mmin = 7 × 105M⊙), and only those that cool via atomic transitions must
be resolved at z = 7 (so that Mmin = 108M⊙), then the maximum box sizes
that can currently be simulated in hydrodynamic comological simulations are
lbox = 1 Mpc and lbox = 6 Mpc at these two redshifts, respectively.

At each redshift we only consider cubic boxes large enough so that the
probability of forming a halo on the scale of the entire box is negligible. In
this case, δ̄R is Gaussian distributed with zero mean and variance S(R), since
the no-halo condition

√

S(R) ≪ δc(z) implies that at redshift z the per-
turbation on the scale R is still in the linear regime. We can then calculate
the probability distribution of collapse fractions in a box of a given size (see
Fig.66). This distribution corresponds to a real variation in the fraction of
gas in galaxies within different regions of the Universe at a given time. In a
numerical simulation, the assumption of periodic boundary conditions elimi-
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Fig. 65. Bias in the halo mass distribution in simulations. Shown is the amount
of mass contained in all halos of individual mass Mmin or greater, expressed as a
fraction of the total mass in a given volume. This cumulative fraction Fcol(Mmin) is
illustrated as a function of the minimum halo mass Mmin. We consider two cases of
redshift and simulation box size, namely z = 7, lbox = 6 Mpc (upper curves), and
z = 20, lbox = 1 Mpc (lower curves). At each redshift, we compare the true average
distribution in the Universe (dotted curve) to the biased distribution (solid curve)
that would be measured in a simulation box with periodic boundary conditions (for
which δ̄R is artificially set to zero).

nates the large-scale modes that cause this cosmic scatter. Note that Poisson
fluctuations in the number of halos within the box would only add to the
scatter, although the variations we have calculated are typically the domi-
nant factor. For instance, in our two standard examples, the mean expected
number of halos in the box is 3 at z = 20 and 900 at z = 7, resulting in
Poisson fluctuations of a factor of about 2 and 1.03, respectively, compared
to the clustering-induced scatter of a factor of about 16 and 2 in these two
cases.

Within the extended Press-Schechter model, both the numerical bias and
the cosmic scatter can be simply described in terms of a shift in the redshift
(see Fig. 67). In general, a region of radius R with a mean overdensity δ̄R will
contain a different collapse fraction than the cosmic mean value at a given
redshift z. However, at some wrong redshift z + ∆z this small region will
contain the cosmic mean collapse fraction at z. At high redshifts (z > 3), this
shift in redshift was derived by Barkana & Loeb [27] from equation (182) [and
was already mentioned in Eq. (168)]

∆z =
δ̄R

δ0
− (1 + z) ×

[

1 −
√

1 − S(R)

S(Rmin)

]

, (183)
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Fig. 66. Probability distribution within a small volume of the total mass frac-
tion in galactic halos. The normalized distribution of the logarithm of this fraction
Fcol(Mmin) is shown for two cases: z = 7, lbox = 6 Mpc, Mmin = 108M⊙ (upper
panel), and z = 20, lbox = 1 Mpc, Mmin = 7× 105M⊙ (bottom panel). In each case,
the value in a periodic box (δ̄R = 0) is shown along with the value that would be
expected given a plus or minus 1 − σ fluctuation in the mean density of the box
(dashed vertical lines). Also shown in each case is the mean value of Fcol(Mmin)
averaged over large cosmological volumes (solid vertical line).

where δ0 ≡ δc(z)/(1 + z) is approximately constant at high redshifts [283],
and equals 1.28 for the standard cosmological parameters (with its deviation
from the Einstein-de Sitter value of 1.69 resulting from the existence of a
cosmological constant). Thus, in our two examples, the bias is -2.6 at z = 20
and -0.4 at z = 7, and the one-sided 1 − σ scatter is 2.4 at z = 20 and 1.2 at
z = 7.
Matching Numerical Simulations

Next we may develop an improved model that fits the results of numerical
simulations more accurately. The model constructs the halo mass distribution
(or mass function); cumulative quantities such as the collapse fraction or the
total number of galaxies can then be determined from it via integration. We
first define f(δc(z), S) dS to be the mass fraction contained at z within halos
with mass in the range corresponding to S to S + dS. As derived earlier, the
Press-Schechter halo abundance is

dn

dM
=

ρ̄0

M

∣

∣

∣

∣

dS

dM

∣

∣

∣

∣

f(δc(z), S) , (184)
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Fig. 67. Cosmic scatter and numerical bias, expressed as the change in redshift
needed to get the correct cosmic mean of the collapse fraction. The plot shows the
1 − σ scatter (about the biased value) in the redshift of reionization, or any other
phenomenon that depends on the mass fraction in galaxies (bottom panel), as well
as the redshift bias [expressed as a fraction of (1 + z)] in periodic simulation boxes
(upper panel). The bias is shown for Mmin = 7 × 105M⊙ (solid curve), Mmin =
108M⊙ (dashed curve), and Mmin = 3× 1010M⊙ (dotted curve). The bias is always
negative, and the plot gives its absolute value. When expressed as a shift in redshift,
the scatter is independent of Mmin.

where dn is the comoving number density of halos with masses in the range
M to M + dM , and

fPS(δc(z), S) =
1√
2π

ν

S
exp

[

−ν2

2

]

, (185)

where ν = δc(z)/
√

S is the number of standard deviations that the critical
collapse overdensity represents on the mass scale M corresponding to the
variance S.

However, the Press-Schechter mass function fits numerical simulations only
roughly, and in particular it substantially underestimates the abundance of
the rare halos that host galaxies at high redshift. The halo mass function of
[333] [see also [334]] adds two free parameters that allow it to fit numerical
simulations much more accurately [188]. These N-body simulations followed
very large volumes at low redshift, so that cosmic scatter did not compromise
their accuracy. The matching mass function is given by
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fST(δc(z), S) = A′ ν

S

√

a′

2π

[

1 +
1

(a′ν2)q′

]

exp

[

−a′ν2

2

]

, (186)

with best-fit parameters [335] a′ = 0.75 and q′ = 0.3, and where normalization
to unity is ensured by taking A′ = 0.322.

In order to calculate cosmic scatter we must determine the biased halo
mass function in a given volume at a given mean density. Within the extended
Press-Schechter model [52], the halo mass distribution in a region of comoving
radius R with a mean overdensity δ̄R is given by

fbias−PS(δc(z), δ̄R, R, S) = fPS(δc(z) − δ̄R, S − S(R)) . (187)

The corresponding collapse fraction in this case is given simply by eq. (182).
Despite the relatively low accuracy of the Press-Schechter mass function, the
relative change is predicted rather accurately by the extended Press-Schechter
model. In other words, the prediction for the halo mass function in a given
volume compared to the cosmic mean mass function provides a good fit to
numerical simulations over a wide range of parameters [258, 77].

For the improved model (derived in [27]), we adopt a hybrid approach that
combines various previous models with each applied where it has been found
to closely match numerical simulations. We obtain the halo mass function
within a restricted volume by starting with the Sheth-Torme formula for the
cosmic mean mass function, and then adjusting it with a relative correction
based on the extended Press-Schechter model. In other words, we set

fbias(δc(z), δ̄R, R, S) =

fST(δc(z), S) ×
[

fPS(δc(z) − δ̄R, S − S(R))

fPS(δc(z), S)

]

. (188)

As noted, this model is based on fits to simulations at low redshifts, but we can
check it at high redshifts as well. Figure 68 shows the number of galactic halos
at z ∼ 15− 30 in two numerical simulations run by [402], and our predictions
given the cosmological input parameters assumed by each simulation. The
close fit to the simulated data (with no additional free parameters) suggests
that our hybrid model (solid lines) improves on the extended Press-Schechter
model (dashed lines), and can be used to calculate accurately the cosmic
scatter in the number of galaxies at both high and low redshifts. The simulated
data significantly deviate from the expected cosmic mean [eq. (186), shown by
the dotted line], due to the artificial suppression of large-scale modes outside
the simulated box.

As an additional example, we consider the highest-resolution first star
simulation [5], which used lbox = 128 kpc and Mmin = 7 × 105M⊙. The first
star forms within the simulated volume when the first halo of mass Mmin or
larger collapses within the box. To compare with the simulation, we predict
the redshift at which the probability of finding at least one halo within the box
equals 50%, accounting for Poisson fluctuations. We find that if the simulation
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Fig. 68. Halo mass function at high redshift in a 1 Mpc box at the cosmic mean
density. The prediction (solid lines) of the hybrid model of Barkana & Loeb (2004)
[27] is compared with the number of halos above mass 7 × 105M⊙ measured in the
simulations of [402] [data points are taken from their Figure 5]. The cosmic mean of
the halo mass function (dotted lines) deviates significantly from the simulated values,
since the periodic boundary conditions within the finite simulation box artificially
set the amplitude of large-scale modes to zero. The hybrid model starts with the
Sheth-Tormen mass function and applies a correction based on the extended Press-
Schechter model; in doing so, it provides a better fit to numerical simulations than
the pure extended Press-Schechter model (dashed lines) used in the previous figures.
We consider two sets of cosmological parameters, the scale-invariant ΛCDM model
of [402] (upper curves), and their running scalar index (RSI) model (lower curves).

formed a population of halos corresponding to the correct cosmic average [as
given by eq. (186)], then the first star should have formed already at z = 24.0.
The first star actually formed in the simulation box only at z = 18.2 [5]. Using
eq. (188) we can account for the loss of large-scale modes beyond the periodic
box, and predict a first star at z = 17.8, a close match given the large Poisson
fluctuations introduced by considering a single galaxy within the box.

The artificial bias in periodic simulation boxes can also be seen in the
results of extensive numerical convergence tests carried out by [349]. They
presented a large array of numerical simulations of galaxy formation run in
periodic boxes over a wide range of box size, mass resolution, and redshift. In
particular, we can identify several pairs of simulations where the simulations
in each pair have the same mass resolution but different box sizes; this allows
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us to separate the effect of large-scale numerical bias from the effect of having
poorly-resolved individual halos.

Implications
(i) The nature of reionization

A variety of papers in the literature [13, 138, 330, 171, 152, 23, 224] main-
tain that reionization ended with a fast, simultaneous, overlap stage through-
out the Universe. This view has been based on simple arguments and has been
supported by numerical simulations with small box sizes. The underlying idea
was that the ionized hydrogen (H II ) regions of individual sources began to
overlap when the typical size of each H II bubble became comparable to the
distance between nearby sources. Since these two length scales were compa-
rable at the critical moment, there is only a single timescale in the problem
– given by the growth rate of each bubble – and it determines the transition
time between the initial overlap of two or three nearby bubbles, to the final
stage where dozens or hundreds of individual sources overlap and produce
large ionized regions. Whenever two ionized bubbles were joined, each point
inside their common boundary became exposed to ionizing photons from both
sources, reducing the neutral hydrogen fraction and allowing ionizing photons
to travel farther before being absorbed. Thus, the ionizing intensity inside
H II regions rose rapidly, allowing those regions to expand into high-density
gas that had previously recombined fast enough to remain neutral when the
ionizing intensity had been low. Since each bubble coalescence accelerates the
process, it has been thought that the overlap phase has the character of a
phase transition and occurs rapidly. Indeed, the simulations of reionization
[152] found that the average mean free path of ionizing photons in the simu-
lated volume rises by an order of magnitude over a redshift interval ∆z = 0.05
at z = 7.

These results imply that overlap is still expected to occur rapidly, but only
in localized high-density regions, where the ionizing intensity and the mean
free path rise rapidly even while other distant regions are still mostly neutral.
In other words, the size of the bubble of an individual source is about the same
in different regions (since most halos have masses just above Mmin), but the
typical distance between nearby sources varies widely across the Universe.
The strong clustering of ionizing sources on length scales as large as 30–
100 Mpc introduces long timescales into the reionization phase transition.
The sharpness of overlap is determined not by the growth rate of bubbles
around individual sources, but by the ability of large groups of sources within
overdense regions to deliver ionizing photons into large underdense regions.

Note that the recombination rate is higher in overdense regions because of
their higher gas density. These regions still reionize first, though, despite the
need to overcome the higher recombination rate, since the number of ionizing
sources in these regions is increased even more strongly as a result of the
dramatic amplification of large-scale modes discussed earlier.
(ii) Limitations of current simulations
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The shortcomings of current simulations do not amount simply to a shift
of ∼ 10% in redshift and the elimination of scatter. The effect mentioned
above can be expressed in terms of a shift in redshift only within the context
of the extended Press-Schechter model, and only if the total mass fraction in
galaxies is considered and not its distribution as a function of galaxy mass.
The halo mass distribution should still have the wrong shape, resulting from
the fact that ∆z depends on Mmin. A self-contained numerical simulation
must directly evolve a very large volume.

Another reason that current simulations are limited is that at high redshift,
when galaxies are still rare, the abundance of galaxies grows rapidly towards
lower redshift. Therefore, a ∼ 10% relative error in redshift implies that at
any given redshift around z ∼ 10–20, the simulation predicts a halo mass
function that can be off by an order of magnitude for halos that host galaxies
(see Fig. 68). This large underestimate suggests that the first generation of
galaxies formed significantly earlier than indicated by recent simulations. An-
other element missed by simulations is the large cosmic scatter. This scatter
can fundamentally change the character of any observable process or feedback
mechanism that depends on a radiation background. Simulations in periodic
boxes eliminate any large-scale scatter by assuming that the simulated volume
is surrounded by identical periodic copies of itself. In the case of reionization,
for instance, current simulations neglect the collective effects described above,
whereby groups of sources in overdense regions may influence large surround-
ing underdense regions. In the case of the formation of the first stars due to
molecular hydrogen cooling, the effect of the soft ultraviolet radiation from
these stars, which tends to dissociate the molecular hydrogen around them
[170, 303, 272], must be reassessed with cosmic scatter included.
(iii) Observational consequences

The spatial fluctuations that we have calculated also affect current and
future observations that probe reionization or the galaxy population at high
redshift. For example, there are a large number of programs searching for
galaxies at the highest accessible redshifts (6.5 and beyond) using their strong
Lyα emission [184, 301, 244, 202]. These programs have previously been justi-
fied as a search for the reionization redshift, since the intrinsic emission should
be absorbed more strongly by the surrounding IGM if this medium is neutral.
For any particular source, it will be hard to clearly recognize this enhanced
absorption because of uncertainties regarding the properties of the source and
its radiative and gravitational effects on its surroundings [24, 26, 312]. How-
ever, if the luminosity function of galaxies that emit Lyα can be observed,
then faint sources, which do not significantly affect their environment, should
be very strongly absorbed in the era before reionization. Reionization can
then be detected statistically through the sudden jump in the number of faint
sources[246]. The above results alter the expectation for such observations. In-
deed, no sharp “reionization redshift” is expected. Instead, a Lyα luminosity
function assembled from a large area of the sky will average over the cosmic
scatter of ∆z ∼ 1–2 between different regions, resulting in a smooth evolu-
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tion of the luminosity function over this redshift range. In addition, such a
survey may be biased to give a relatively high redshift, since only the most
massive galaxies can be detected, and as we have shown, these galaxies will be
concentrated in overdense regions that will also get reionized relatively early.

The distribution of ionized patches during reionization will likely be probed
by future observations, including small-scale anisotropies of the cosmic mi-
crowave background photons that are rescattered by the ionized patches
[8, 162, 313], and observations of 21 cm emission by the spin-flip transition of
the hydrogen in neutral regions [366, 75, 142]. Previous analytical and numer-
ical estimates of these signals have not included the collective effects discussed
above, in which rare groups of massive galaxies may reionize large surround-
ing areas. The transfer of photons across large scales will likely smooth out
the signal even on scales significantly larger than the typical size of an H II
bubble due to an individual galaxy. Therefore, even the characteristic angular
scales that are expected to show correlations in such observations must be
reassessed.

The cosmic scatter also affects observations in the present-day Universe
that depend on the history of reionization. For instance, photoionization heat-
ing suppresses the formation of dwarf galaxies after reionization, suggesting
that the smallest galaxies seen today may have formed prior to reionization
[73, 344, 37]. Under the popular view that assumed a sharp end to reioniza-
tion, it was expected that denser regions would have formed more galaxies by
the time of reionization, possibly explaining the larger relative abundance of
dwarf galaxies observed in galaxy clusters compared to lower-density regions
such as the Local Group of galaxies [369, 38]. The above results undercut
the basic assumption of this argument and suggest a different explanation.
Reionization occurs roughly when the number of ionizing photons produced
starts to exceed the number of hydrogen atoms in the surrounding IGM. If
the processes of star formation and the production of ionizing photons are
equally efficient within galaxies that lie in different regions, then reionization
in each region will occur when the collapse fraction reaches the same critical
value, even though this will occur at different times in different regions. Since
the galaxies responsible for reionization have the same masses as present-day
dwarf galaxies, this estimate argues for a roughly equal abundance of dwarf
galaxies in all environments today. This simple picture is, however, modified
by several additional effects. First, the recombination rate is higher in over-
dense regions at any given time, as discussed above. Furthermore, reionization
in such regions is accomplished at an earlier time when the recombination
rate was higher even at the mean cosmic density; therefore, more ionizing
photons must be produced in order to compensate for the enhanced recom-
bination rate. These two effects combine to make overdense regions reionize
at a higher value of Fcol than underdense regions. In addition, the overdense
regions, which reionize first, subsequently send their extra ionizing photons
into the surrounding underdense regions, causing the latter to reionize at an
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even lower Fcol. Thus, a higher abundance of dwarf galaxies today is indeed
expected in the overdense regions.

The same basic effect may be even more critical for understanding the
properties of large-scale voids, 10–30 Mpc regions in the present-day Universe
with an average mass density that is well below the cosmic mean. In order to
predict their properties, the first step is to consider the abundance of dark mat-
ter halos within them. Numerical simulations show that voids contain a lower
relative abundance of rare halos [249, 82, 39], as expected from the raising of
the collapse threshold for halos within a void. On the other hand, simulations
show that voids actually place a larger fraction of their dark matter content
in dwarf halos of mass below 1010M⊙ [157]. This can be understood within
the extended Press-Schechter model. At the present time, a typical region in
the Universe fills halos of mass 1012M⊙ and higher with most of the dark
matter, and very little is left over for isolated dwarf halos. Although a large
number of dwarf halos may have formed at early times in such a region, the
vast majority later merged with other halos, and by the present time they
survive only as substructure inside much larger halos. In a void, on the other
hand, large halos are rare even today, implying that most of the dwarf halos
that formed early within a void can remain as isolated dwarf halos till the
present. Thus, most isolated dwarf dark matter halos in the present Universe
should be found within large-scale voids [25].

However, voids are observed to be rather deficient in dwarf galaxies as
well as in larger galaxies on the scale of the Milky Way mass of ∼ 1012M⊙

[200, 120, 285]. A deficit of large galaxies is naturally expected, since the total
mass density in the void is unusually low, and the fraction of this already
low density that assembles in large halos is further reduced relative to higher-
density regions. The absence of dwarf galaxies is harder to understand, given
the higher relative abundance expected for their host dark matter halos. The
standard model for galaxy formation may be consistent with the observations
if some of the dwarf halos are dark and do not host stars. Large numbers of
dark dwarf halos may be produced by the effect of reionization in suppressing
the infall of gas into these halos. Indeed, exactly the same factors considered
above, in the discussion of dwarf galaxies in clusters compared to those in small
groups, apply also to voids. Thus, the voids should reionize last, but since they
are most strongly affected by ionizing photons from their surroundings (which
have a higher density than the voids themselves), the voids should reionize
when the abundance of galaxies within them is relatively low.
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84. R. Cen, J. Miralda-Escudé, J. P.Ostriker, & M. Rauch: ApJ 437, L9 (1994)
85. R. Cen, Z. Haiman, & A. Mesinger: ApJ 621, 89 (2005)
86. P. Chatterjee, L. Hernquist, A. Loeb: ApJ 572, 371 (2002); Phys. Rev. Lett.

88, 121103 (2002)
87. X. Chen, M. Kamionkowski, & X. Zhang: Phys. Rev. D 64, 021302 (2001)
88. X. Chen, & J. Miralda-Escudé: ApJ 602, 1 (2004)
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157. S. Gottlöber, E. L.  Lokas, A. Klypin, & Y. Hoffman: MNRAS 344, 715 (2003)
158. A. M. Green, S. Hofmann, & D. J. Schwarz: MNRAS 353, L23 (2004)
159. A. M. Green, S. Hofmann, & D. J. Schwarz: preprint (2005), (astro-

ph/0503387)
160. P. J. Green et al.: ApJ 558, 109 (2001); G. Chartas, et al.: ApJ 579, 169

(2002); S. C. Gallagher, et al.: ApJ, 567, 37 (2002); A. R. King, K. A. Pounds:
MNRAS 345, 657 (2003); K. A. Pounds, et al.: MNRAS 346, 1025 (2003)

161. A. Gould: ApJl 386, 5 (1992); K. Z. Stanek, B. Paczynski & J. Goodman:
ApJl 413, 7 (1993); A. Ulmer & J. Goodman: ApJ 442, 67 (1995)

162. A. Gruzinov, & W. Hu: ApJ 508, 435 (1998)
163. J. E. Gunn, B. A. Peterson: ApJ 142, 1633-1641 (1965)
164. J. E. Gunn, & J.R. Gott: ApJ 176, 1 (1972)
165. J. E. Gunn: ApJ 218, 592 (1977)
166. F. Haardt, & P. Madau: ApJ 461, 20 (1996)
167. Z. Haiman, A. Thoul, & A. Loeb: (1994)
168. Z. Haiman, A. Thoul, & A. Loeb: ApJ 464, 523 (1996)
169. Z. Haiman, M. J.Rees, & A.Loeb: ApJ 467, 522 (1996)



152 Abraham Loeb

170. Z. Haiman, M. J. Rees, & A. Loeb: ApJ 476, 458 (1997); erratum, 484, 985
171. Z. Haiman, & A. Loeb: ApJ 483, 21 (1997); erratum – ApJ 499, 520 (1998)
172. Z. Haiman, & A. Loeb: ApJ 503, 505 (1998)
173. Z. Haiman, & M. Spaans: ApJ 518, 138 (1999)
174. Z. Haiman, T. Abel, & P. Madau: ApJ 551, 599 (2000)
175. Z. Haiman, A. Loeb: ApJ 552, 459 (2001)
176. Z. Haiman, & G. P. Holder: ApJ 595, 1 (2003)
177. Z. Haiman, & R. Cen: ApJ 623, 627 (2005)
178. A. Hamilton: ApJ 385, L5, (1992)
179. J. Haislip, et al.: Nature, submitted (2005), (astro-ph/0509660)
180. L. Hernquist, N. Katz, D. H. Weinberg, & J. Miralda-Escudé: ApJ 457, L51
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183. C. G. Hoopes, R. A. M. Walterbos, & R. J. Rand: ApJ 522, 669 (1999)
184. E. M. Hu, et al.: ApJ 568, 75; (2002) erratum 576, 99
185. M. Hurwitz, P. Jelinsky, & W. Dixon: ApJ 481, L31 (1997)
186. I. T. Iliev, G. Mellema, U. L.,Pen, H. Merz, P. R. Shapiro, & M. A. Alvarez:

preprint (2005), astro-ph/0512187
187. J. H. Jeans: Astronomy and Cosmogony (Cambridge: Cambridge University

Press) (1928)
188. A. Jenkins, et al.: MNRAS 321, 372 (2001)
189. G. Jungman, M. Kamionkowski, & K. Griest: Phys. Rep. 267, 195 (1996);

L. Bergstrom, Rep. Prog. Phys. 63, 793 (2000); R. J. Gaitskell, Ann. Rev. of
Nuclear and Particle Science 54, 315 (2004)

190. N. Kaiser: ApJ 284, L9, (1984)
191. N. Kaiser: MNRAS 227, 1, (1987)
192. M. Kamionkowski & A. R. Liddle: Phys.Rev.Lett. 84, 4525 (2000)
193. A. Kashlinsky, R. G. Arendt, J. Mather, & S. H. Moseley: Nature 438, 45

(2005)
194. N. E. Kassim & K. W. Weiler: Low Frequency Astrophysics from Space,

Springer-Verlag: New-York, (1990); R. G. Stone, et al.: Radio Astronomy at
Long Wavelengths, American Geophysical Union: Washington DC, (2000); see
also http://rsd-www.nrl.navy.mil/7213/weiler/lfraspce.html

195. G. Kauffmann, & S.D.M. White: MNRAS 261, 921 (1993)
196. G. Kauffmann, S.D.M. White, & B. Guiderdoni: MNRAS 264, 201 (1993)
197. G. Kauffmann, M. Haehnelt: MNRAS 311, 576 (2000)
198. E. T. Kearns: Frascati Phys.Ser. 28 413 (2002); J. N. Bahcall & C. Pena-

Garay: JHEP 0311, 004 (2003)
199. A. King: ApJ 596, L27 (2003)
200. R. P. Kirshner, A. Oemler, P. L. Schechter, & S. A. Shectman: ApJL 248,

L57 1981
201. T. Kitayama, & S. Ikeuchi: ApJ 529, 615 (2000)
202. K. Kodaira: et al.: PASJ 55, 2, L17 (2003)
203. A. Kogut, et al.: ApJS 148, 161 (2003)
204. K. Kohler, N. Y. Gnedin, & A. J. S. Hamilton: ArXiv Astrophysics e-prints,

(2005), arXiv:(astro-ph/0511627)
205. E. W. Kolb, & M. S. Turner: The Early Universe (Redwood City, CA: Addison-

Wesley) (1990)



First Light 153

206. J. Kormendy: preprint (2003), (astro-ph/0306353)
207. P. P. Kronberg, et al.: ApJ 560, 178 (2001)
208. P. Kroupa: Science 295, 82 (2002)
209. R. P. Kudritzki, et al.: ApJ 536, 19 (2000)
210. R. P. Kudritzki: ApJ 577, 389 (2002)
211. S. R. Kulkarni, et al.: Proc. SPIE, 4005, 9 (2000)
212. C.G. Lacey, & S. Cole: MNRAS 262, 627 (1993)
213. C.G. Lacey, & S. Cole: MNRAS 271, 676 (1994)
214. D. Q. Lamb, & D. E. Reichart: ApJ 536, 1 (2000)
215. R. Larson: in Proc. of the 33rd ESLAB Symposium, Star Formation from the

Small to the Large Scale, Noordwijk, The Netherlands, November 2-5, 1999,
ESA Special Publications Series (SP-445), edited by F. Favata, A. A. Kaas,
and A. Wilson (1999), (astro-ph/9912539)

216. R. B. Larson: MNRAS 332, 155 (2002)
217. C. Leitherer, H. C. Ferguson, T. M. Heckman, & J. D. Lowenthal: ApJ 452,

549 (1995)
218. A. R. Liddle & D. H. Lyth: Cosmological Inflation and Large-Scale Structure,

Cambridge U. Press: Cambridge, (2000)
219. P. B. Lilje, & G. Efstathiou: MNRAS 236, 851 (1989)
220. A. Loeb, & F. Rasio: ApJ 432, 52 (1994)
221. A. Loeb: In E. Smith, A. Koratkar (Eds.), ASP Conf. Series Vol. 133, Science

With The Next Generation Space Telescope, ASP, San Francisco, p 73 (1998)
(astro-ph/9704290)

222. A. Loeb, & Z. Haiman: ApJ 490, 571 (1997)
223. A. Loeb, & G. B. Rybicki: ApJ 524, 527 (1999)
224. A. Loeb, & R. Barkana: Ann. Rev. Astron. & Ap. 39, 19 (2001)
225. A. Loeb, & P. J. E. Peebles: ApJ 589, 29 (2003)
226. A. Loeb, & M. Zaldarriaga: Phys. Rev. Lett., 92, 211301 (2004)
227. A. Loeb, R. Barkana, & L. Hernquist: ApJ 620, 553 (2005)
228. A. Loeb, & M. Zaldarriaga: Phys. Rev.: D71, 103520 (2005)
229. L. Lu, W. Sargent, T. A. Barlow, & M. Rauch: A& A submitted (1998),

(astro-ph/9802189)
230. C. Ma, & E. Bertschinger: ApJ 455, 7 (1995)
231. A. I. MacFadyen, S. E. Woosley, & A. Heger: ApJ 550, 410 (2001)
232. M. E. Machacek, G. L. Bryan, & T. Abel: ApJ 548, 509 (2001)
233. M. E. Machacek, G. L. Bryan, & T. Abel: MNRAS 338, 27 (2003),
234. J. Mackey, V. Bromm, & L. Hernquist: ApJ 586, 1 (2003)
235. M.-M. Mac Low, & A. Ferrara: ApJ 513, 142 (1999)
236. P. Madau, & J. M. Shull: ApJ 457, 551 (1996)
237. P. Madau, A. Meiksin, & M. J. Rees: ApJ 475, 429 (1997)
238. P. Madau: in the proceedings of the 9th Annual October Astrophysics Con-

ference in Maryland, After the Dark Ages: When Galaxies were Young, edited
by S. S. Holt and E. P. Smith, (1999), astro-ph/9901237

239. P. Madau, F. Haardt, & M. J. Rees: ApJ 514, 648 (1999)
240. P. Madau, & M. J. Rees: ApJl 542, L69 (2000)
241. P. Madau, A. Ferrara, & M. J. Rees: ApJ 555, 92 (2001)
242. P. Madau, & J. Silk: MNRAS 359, L37 (2005)
243. J. Magorrian, et al.: AJ 115, 2285 (1998)
244. C. Maier, et al.: A&A 402, 79 (2003)



154 Abraham Loeb

245. J. M. Maldacena: JHEP 0305, 013 (2003)
246. S. Malhotra, & J. Rhoads: ApJL, submitted (2005), (astro-ph/0511196)
247. C. L. Martin: ApJ 513, 156 (1999)
248. P. Martini: preprint (2003), (astro-ph/0304009)
249. H. Mathis, & S. D. M. White: MNRAS 337, 1193 (2002)
250. M. McQuinn, O. Zahn, M. Zaldarriaga, L. Hernquist, & S. R. Furlanetto: ApJ,

submitted (2005), preprint (astro-ph/0512263)
251. A. Mesinger, & Z. Haiman: ApJ 611, L69 (2004)
252. D. M. Meyer, & D. G. York: ApJ 315, L5 (1987)
253. M. Milgrom, New Astron. Rev. 46, 741 (2002); J. D. Bekenstein, Phys.Rev.

D 70, 083509 (2004)
254. J. Miralda-Escudé: ApJ 501, 15 (1998)
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