Contents Previous

REFERENCES

  1. Steven Weinberg, Gravitation and Cosmology: Principles and Applications of the General Theory of Relativity, (John Wiley & Sons, New York, 1972).
  2. It should be noted that what we have called the Hubble parameter is also often called the Hubble constant. This name is inappropriate, however, because the Hubble parameter is time dependent.
  3. Vera Rubin, Bright Galaxies, Dark Matter, (Springer Verlag/AIP Press, New York, 1997).
  4. P. J. E. Peebles, Principles of Physical Cosmology, (Princeton University Press, Princeton, 1993) p. 14.
  5. Sean M. Carroll, "The Cosmological Constant", Living Rev. Rel. 4, 1-80 (2001); astro-ph/0004075.
  6. For additional discussion on the cosmological constant see A. Harvey and E. Schucking, "Einstein's mistake and the cosmological constant," Am. J. Phys. 68, 723-727 (2000).
  7. Stephen Webb, Measuring the Universe: The Cosmological Distance Ladder, (Praxis, Chichester, UK, 1999), pp. 229-230.
  8. P. Hoflich, Thielemann, F. K., and Wheeler J. C., "Type Ia Supernovae: Influence of the Initial Composition on the Nucleosynthesis, Light Curves, Spectra, and Consequences for the Determination of OmegaM & Lambda," Astrophys. J. 495, 617-629 (1998); astro-ph/9709233.
  9. Bradley W. Carroll and Dale A. Ostlie, An Introduction to Modern Astrophysics (Addison-Wesley, Reading, MA, 1996) pp. 588-590.
  10. M. Hamuy, M. M. Phillips, J. Maza et. al., "A Hubble Diagram of Distant Type Ia Supernovae," The Astron. Journal, 109(1), 1-13 (1995).
  11. See p. 231 of Ref. 7.
  12. M. Hamuy, M. M. Phillips, N. Suntzeff, and R. Schommer, "The Hubble Diagram of the Calán/Tololo Type Ia Supernovae and the value of H0," The Astron. Journal, 112, 2398-2407 (1996); astro-ph/9609062. A. G. Kim, S. Gabi, G. Goldharber et. al. "Implications for the Hubble Constant from the First Seven Supernovae at z leq 0.35," Astrophys. J. 476, L63-66 (1997).
  13. Wendy L. Freedman, B. F. Madore, B. K. Gibson et al., "Final Results from the Hubble Space Telescope Key Project to Measure the Hubble Constant," Astrophys. J., 553, 47-72 (2001).
  14. See p. 97 of Ref. 4.
  15. S. M. Carroll, W. H. Press, and E. L. Turner, Ann. Rev. Astron. & Astrophys., 30, 499-542 (1992).
  16. Adam G. Riess, Alexei V. Filippenko, Peter Challis et al., "Observational Evidence from Supernovae for an Accelerating Universe and a Cosmological Constant," Astron. J., 116, 1009-1038 (1998).
  17. Martin White and J. D. Cohn, "Resource Letter: TACMB-1: The theory of anisotropies in the cosmic microwave background," Am. J. Phys. 70, 106-118 (2002).
  18. Alan H. Guth, The Inflationary Universe, (Perseus Books, Reading, MA, 1997).
  19. G. F. Smoot, C. L. Bennett, A. Kogut et al., "Structure in the COBE differential microwave radiometer first-year maps," Astrophys. J. 396, L1-5 (1992).
  20. A. D. Miller, R. Caldwell, M. J. Devlin et al., "A Measurement of the Angular Power Spectrum of the Cosmic Microwave Background from l = 100 to 400," Astrophys. J., 524, L1-4 (1999); astro-ph/9906421.
  21. S. Hanany, P. Ade, A. Balbi et al., "MAXIMA-1: A Measurement of the Cosmic Microwave Background Anisotropy on Angular Scales of 10' - 5°," Astrophys. J., 545, L5-9 (2000); astro-ph/0005123.
  22. P. de Bernardis, P. A. R. Ade, J. J. Bock et al., "A Flat Universe from High-resolution Maps of the Cosmic Microwave Background Radiation," Nature, 404, 955-959 (2000); astro-ph/0004404.
  23. J. A. Peacock, Cosmological Physics, (Cambridge University Press, New York, 1999) pp. 591-592.
  24. P. J. E. Peebles and J. T. Yu, "Primeval Adiabatic Perturbation in an Expanding Universe," Astrophys. J., 162, 815-836 (1970).
  25. Martin White, Douglas Scott, and Joseph Silk, "Anisotropies in the Cosmic Microwave Background," Ann. Rev. Astron. Atrophys., 32, 319-370 (1994).
  26. W. Hu and M. White, "Acoustic Signatures in the Cosmic Microwave Background," Astrophys. J., 471, 30-51 (1996); astro-ph/9602019.
  27. Hans C. Ohanian and Remo Ruffini, Gravitation and Spacetime, 2nd ed., (W. W. Norton & Co., New York, 1994) chap. 10.
  28. See Ref. 21.
  29. Neil J. Cornish, "Using the acoustic peak to measure cosmological parameters," Phys. Rev. D, 63, 027302-1 - 4 (2001); astro-ph/0005261.
  30. See http://physics.nyu.edu/matiasz/CMBFAST/cmbfast.html
  31. See Ref. 26.
  32. C. L. Bennett, A. J. Banday, K. M. Górski et al., "Four-Year COBE DMR Cosmic Microwave Background Observations: Maps and Basic Results," Astrophys. J., 464, L1-4 (1996).
  33. A. H. Jaffe, P. A. R. Ade, A. Balbi et al., "Cosmology from MAXIMA-1, BOOMERANG & CODE/DMR CMB Observations," Phys. Rev. Lett., 86, 3475-3479 (2001); astro-ph/0007333.
  34. Kyu-Hyun Chae, "New Modeling of the Lensing Galaxy and Cluster of Q0957+561: Implications for the Global Value of the Hubble Constant," Astrophys. J., 524, 582-590 (1999).
  35. J. A. Peacock, S. Cole, P. Norberg et al., "A measurement of the cosmological mass density from clustering in the 2dF Galaxy Redshift Survey," Nature, 410, 169-173 (2001); astro-ph/0103143.
  36. L. M. Krauss, "The Age of Globular Clusters," Phys. Rept., 333, 33-45 (2000); astro-ph/9907308.
  37. The values that we have used are predominantly consistent with those of C. H. Linewater, "Cosmological Parameters," astro-ph/0112381.
  38. Ø. Grøn, "A new standard model of the universe," Eur. J. Phys. 23, 135-144 (2002).
  39. A. Dey, H. Spinrad, D. Stern et al., "A galaxy at z = 5.34," Astrophys. J., 498, L93-97 (1998).
  40. See, for example, Alex Harvey, "Is the Universe's Expansion Accelerating?," Phys. Today (Letters), 55, 73-74 (2002).
  41. See for example, M. Doran and C. Wetterich, "Quintessence and the cosmological constant," astro-ph/0205267; and M. Mbonye, "Matter fields from a decaying background Lambda vacuum," astro-ph/0208244.
  42. Fred Adams and Greg Laughlin, The Five Ages of the Universe: Inside the Physics of Eternity, (Simon & Schuster, New York, 1999).
  43. See http://background.uchicago.edu/~whu/.

Contents Previous