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1. INTRODUCTION

Elliptical galaxies are the simplest type of galaxy and therefore the natural
starting point for studies of galaxies in general. Furthermore, it has often been
argued (e.g. de Vaucouleurs 1959, Ostriker 1977) that at the heart of every
disk galaxy there sits a small elliptical, the bulge, around which the disk that
now dominates the light distribution has been assembled. So it is possible that
ellipticals and bulges are, so to speak, the founding fathers of the realm of the
nebulae, and as such may have profoundly influenced the form of the com-
ponents into which the majority of the luminous matter in the Universe sub-
sequently settled.

For many years neither elliptical galaxies nor bulges received the attention
warranted by their intrinsic interest. There were two reasons for this. The
subsidiary reason was that it was widely felt that elliptical galaxies are so
simple that their structures could be inferred by Plato’s preferred method of
research—pure thought. Surely these systems were isothermal bodies that
rotate more or less rapidly according to their degree of equatorial-flattening.
Galaxies of this type did not seem mysterious. However, the principal reason
why ellipticals tended to be neglected in favor of disk galaxies was the great
labor involved in obtaining reliable photometry or measuring their mean and
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random velocities. For practical purposes, and despite the pioneering work of
de Vaucouleurs (1948) and Minkowski (1961), both of these types of mea-
surements had to wait until the advent of computer-assisted plate-scanning
machines, high-quantum efficiency spectrometers, and computers capable of
extracting velocity information from the spectra.

Since 1976, a considerable body of photometric and kinematic data con-
cerning elliptical galaxies has been assembled by astronomers around the
world. And just as the merest blade of grass is discovered to be a superbly
delicate structure as soon as it is examined under a microscope, so too have
the simplest of galaxies proven to be remarkably complex. They are not
isothermal and they do not rotate in proportion to their flattening. In this
review, it is not possible to say what they are, because theory now lags behind
observation in its efforts to coordinate the many observational data available
into a self-consistent picture of elliptical galaxies. But the outlines of what
may become the standard picture can be descried, and the observational facts
can be stated.

The bulges of disk galaxies are only now coming under concerted attack by
the observers, but the first results are fascinating. Much hangs on the question
of whether bulges really are just small ellipticals, or whether they represent an
independent type of beast. For if it can be shown that they form a subspecies
of elliptical, this would constitute strong evidence that elliptical galaxies and
bulges are the fundamental systems toward which theories of galaxy formation
should be directed. But if observation shows that bulges are quite unlike
ellipticals, this might indicate that ellipticals are, as Toomre (1977) has ar-
gued, formed by the merging of disk galaxies, which then become the basic
products of galaxy formation in the primitive Universe.

The range of topics covered in this review has been severely restricted by
the availability of space. It has not been possible to include a discussion of the
formation and evolution of spheroidal components, or even to give a complete
review of the literature concerning their equilibria. Additional information can
be found in the reviews of Gott (1977, 1980), Freeman (1975, 1977) and
Binney (1980a).

The article is organized as follows. Section 2 covers the basic stellar dynam-
ical concepts. Section 3 is concerned with the radial structure of spheroidal
components; Section 3.1 describes theoretical models against which the obser-
vations that are reviewed in Section 3.2 may be measured. Section 4 is
concerned with the shapes of spheroidal components. Section 4.1 reviews the
theoretical situation regarding axisymmetric and triaxial models, and Section
4.2 describes observations relevant to determining the shapes of spheroidal
components and the dynamical processes that underlie their figures. Section 5
sums up and looks to the future.
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2. BASIC CONSIDERATIONS

Since before Baade (1944) resolved the brightest stars in the bulge of M31, it
has been recognized that spheroidal components consist of swarms of stars that
move about in the gravitational field that is generated by themselves and any
other components that have an appreciable density in the same volume of
space. Observations show that typical stellar speeds exceed 200 km s ™', so that
a star completes a half-orbit of semimajor axis r kpc in

T,=10ry =3 X 10" y. (D

The effective smoothness of the gravitational field in which the stars of a
galaxy move may be measured by comparing the two-body relaxation time 75
to T,,. T, 1s the time typically required for a star in the system to be deflected
from the path it would follow in the smooth potential by encounters with other
stars. If the system is only modestly concentrated toward its center and is made
up of N equal point masses, a simple application of the virial theorem and the
expression for Top given by Spitzer & Harm (1958) shows that

N

T ~
2 7 30mN

T 2

If the constituent masses are unequal, N in this formula should be set equal to
the total mass of the system divided by the mass of the heaviest point masses.
If we take N > 10'°, we may conclude that in the main body of a spheroidal
component Toz > 10® X T, > 10"y, so that the trajectories of stars may be
computed using a smooth mean field for times longer than the Hubble time 7y.
However, one should note that there are two circumstances in which two-body
effects can play a role in the dynamics of spheroidal components. The first is
when the effective value of N is smaller than 10°. For example, a massive
globular cluster may contain 10’ Mg, i.e. 107 of the mass of a typical
spheroidal component, with the result that a system of globular clusters or-
biting through a spheroidal component corresponds to N < 10° and may suffer
appreciable evolution within a Hubble time (Tremaine et al. 1975). The
second case is when a spheroidal component is so centrally concentrated that
its nucleus may become dynamically separate from the main body of the
galaxy. The crossing time T, may be very small for stars in the nucleus (e.g.
T, < 10° y in the nucleus of M31) and N may be less than or of order 107, so
that T,p < Ty there. Spitzer & Saslaw (1966) have discussed the significance
of this situation for the formation of active galactic nuclei.

If one confines oneself to consideration of the main body of the galaxy, the
unimportance of two-body evolution enables one to describe the dynamics of
the system with the single-particle distribution function f(x, v) that gives the
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mass density of stars at the point (X, v) in phase space. If fis a differentiable
function of x and v, then it evolves in time according to the collisionless
Boltzmann or Vlasov equation:

Ve - —. L =-2 3)

One is usually interested in the steady states of galaxies, when df/ ot might
be supposed to vanish, at least when f is referred to some suitable rotating
coordinate system. Unfortunately, a distribution function f that is initially
smooth may become with the passage of time less and less smooth in certain
parts of the space, with the result that for many potentials differentiable
time-independent solutions of Equation (3) do not exist. When the f that
satisfies Equation (3) becomes rough in this way, one must distinguish be-
tween the fine-grained distribution function f and the coarse-grained distribu-
tion function f,, obtained by averaging f over macroscopic regions in phase
space. When f does not become rough, and the right-hand side of Equation (3)
vanishes for some differentiable f, Equation (3) then states that f is constant
along the curves in phase space that are followed by the representative points
of stars as the stars orbit in the potential. That is, the time-independent Vlasov
equation states that f is an integral of the equations of stellar motion. If /; (x,
v), ..., (x, v)is a complete set of integrals, then

f:f(lh c e ’]n)a (4)

which is known as Jeans’ theorem. Conversely, any integral or function of any
integrals that happen to be known gives solutions to the time-independent
Vlasov equation.

Jeans’ theorem raises the thorny question of how many integrals there are
in a complete set. It is important to distinguish between isolating integrals and
nonisolating integrals. An isolating integral is one for which the equation

I(x,v) =C, )

where C is a constant, defines a smooth five-dimensional hypersurface in
phase space. It is clear that the minimum number of isolating integrals is one,
because the energy E(x, v) is always such an integral, and the maximum
number is five, because the intersection of the N five-dimensional hyper-
surfaces associated with each isolating integral must contain the one-
dimensional space of an individual orbit. However, very few potentials admit
as many as five isolating integrals. The usual number of isolating integrals is
three, one for each pair of canonical coordinates.

When there are three or more isolating integrals, the orbit of a star is
quasi-periodic; that is, the evolution of any phase space coordinate may be
expressed as a Fourier series
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x(®) = D Aune expli(no; + mw, + L), (6)
n,m,{=—c

where w,, w,, and w; are frequencies characteristic of the orbit and nearly all
the power is concentrated in the terms involving small n, m, and € (Binney &
Spergel 1982). Four or five isolating integrals arise when two or more of the
frequencies w; are commensurable. An example of this phenomenon is given
by motion in the Kepler potential ® ~ 1/r. Then the orbital frequency is the
only independent frequency, and there are five isolating integrals.

In a general potential, some (often the great majority) of the orbits are
quasi-periodic and admit three isolating integrals. These are the regular orbits.
But there are usually some orbits, called irregular or stochastic orbits, that are
not quasi-periodic. These orbits cannot admit three isolating integrals because
their representative points in phase space occupy a volume that has more than
three dimensions, and therefore cannot be described as the intersection of three
five-dimensional hypersurfaces. However, these orbits do not pass close to
every point in the five-dimensional hypersurface of their energy integral, i.e.
they are not ergodic in the sense of classical statistical mechanics. The so-
called KAM theorem (e.g. Moser 1977) assures us that there are always
regions of the energy hypersurface that are forbidden to them because that
space is occupied by regular orbits. And one finds that even in parts of the
phase space where irregular orbits are in the majority, a given irregular orbit
will spend the majority of its time in certain areas (Ichimura & Saito 1978,
Goodman & Schwarzschild 1981, Binney 1982b). This complex orbital struc-
ture prevents the fine-grained distribution function f, for which the Vlasov
equation (3) holds, from reaching a steady state.

It is uncertain what role the irregular orbits play in the structure and evo-
lution of spheroidal components. In particular, we do not know what features
of the potential ® determine what proportion of all orbits are irregular. But in
any galaxy in which an appreciable fraction of the stars are on irregular orbits,
the coarse-grained distribution function fi(x, v), which is the quantity of
astronomical interest, will not obey the time-independent Vlasov equation and
hence will not be a function of (x, v) only through the integrals of stellar
motion. Therefore Jeans’ theorem should be used more cautiously than per-
haps it has been in the past. Furthermore, irregular orbits may evolve in a
systematic way on time scales that are long compared to the dynamical time
of the system, but not longer than the Hubble time. If this is so, they may drive
galactic evolution in a way that has yet to be fully explored (Sanders, in
preparation).

The ideal basis for the interpretation of observations would be an array of
stellar dynamical models deriving from exact solutions of the Vlasov equation
(3). Unfortunately we are far from possessing such a hoard of treasure and we
have to confine ourselves, for the most part, to statements about the properties
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such models would have if we were able to construct them. Constraints of this
type are obtained by integrating multiples of the Vlasov equation over all
velocities (or over both velocities and space) to obtain moment equations.
Thus when one multiplies Equation (3) by 1 or v and integrates over all
velocities, one obtains the equations that have been called the equations of
stellar hydrodynamics by reason of their similarity to the equations of fluid
flow. [A more convenient and less misleading designation might be the “Jeans
equations” in honor of Jeans’ (1922) investigation of them.] For future refer-
ence note that the equation obtained on multiplication of (3) by v is for a
steady-state system of spherical symmetry

d In po? —vi(r
TR i g
where
p = [fd (8a)
or = <v;> = (1/p)ffoi dv (8b)
B=1-<vi>/<vl> (8¢c)
M@) = 4z f ‘o ridr (8d)
0

When the Vlasov equation (3) is multiplied by x;v; and integrated over all
velocities and spatial coordinates, the equations of the tensor virial theorem
are obtained (Chandrasekhar 1964, Binney 1978a). This theorem is valuable
because it states that the ratios <pv?>/<pv?>, etc., of the kinetic energies
associated with the components of motion parallel to the three body-axes of
the system depend on the shape of the system and the speed with which the
figure rotates with respect to inertial space, but not on its radial density profile.
In particular, if one knows the figure of a flattened axisymmetric galaxy, one
immediately knows how much more kinetic energy is associated with motion
parallel to the equatorial plane than perpendicular to this plane. Some of this
additional kinetic energy will be associated with rotation, and the rest with
anisotropy of the velocity dispersion tensor.

The tensor virial theorem has been used in recent years as the standard
framework within which to analyze observations of the kinematics of spher-
oidal components. However, it should be realized that the popularity of the
virial theorem arises not so much from its own merits, but because we lack
realistic models of flattened spheroidal components. Consequently, we are
obliged to reduce the wealth of information contained in the best recent
observations of spheroidal components to the pair of numbers that can be
accommodated by the tensor virial theorem. Section 4 discusses the origin of
this unfortunate situation.
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3. RADIAL STRUCTURE OF SPHEROIDAL
COMPONENTS

The variation of mass density, luminosity density, and velocity dispersion as
a function of radius are most easily discussed in terms of spherical models.
These are much easier to construct than nonspherical models, and neither
observation nor theory indicate that the radial profiles of nonspherical galaxies
are affected in important ways by the shapes of the systems. In particular, the
works of Saaf (1968) and Richstone (1981) indicate that the total angular
momentum of a star is approximately conserved when it orbits in a mildly
nonspherical potential.

3.1 Model Galaxies

If a galaxy is spherical, stars orbiting in its potential are constrained by four
independent isolating integrals—the three components of the angular momen-
tum vector J and the energy—and we may invoke Jeans’ theorem to construct
models by taking fto be an arbitrary positive function of these four integrals.
If the galaxy is not only spherical, but also spherically symmetric in all its
properties, f can depend on J,, J, and J, only through the combination
J*=J+ J2 + J? so fis then of the form f = f(E,J).

SYSTEMS HAVING f(E) For many years elliptical galaxies have been discussed
in terms of models whose distribution functions depend only on E. These
models are interesting, but it is important to recognize that they constitute a
narrowly restricted class of possible spherically symmetric galaxies, and it is
unlikely that Nature confines herself to models of this type. The majority of
these models are modifications of the isothermal sphere, whose distribution
function is simply

Fi(E) = (2m0*)7*?p(0) exp{[®(0) — E1/o?}, ®)

where ®(0) is the potential energy at the center of the system. Integrating f;
over all velocities yields the density at radius r as

p(r) = p(0) exp{[P©0) — @(N]/ o’} (10)

If the system is self-gravitating, one obtains on solving Poisson’s equation
with p replaced by (10),

®0) — O(r) = 20 In(r/r.) (r >>r), (11)
where
r. = 30{4mwGp(0)] (12)

is the “core radius” at which the projected density falls to very nearly /2 of its
value at the center. Substituting Equation (11) into (10), one sees that at large
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radii, p ~ r~2. If the system is not self-gravitating, but sits in the potential of
another isothermal population whose velocity dispersion o, differs from that
of the first system, one has from equations (10) and (11) that at large radii the
density of the first population falls off as p ~r~2/*”_ Gunn (1977) has argued
that the brightness profiles of galaxies may fall off more steeply than as r~*
because the velocity dispersion o of the luminous stars is less than that (o)
of the mass-bearing halo population by a factor of order o/ o; = 0.82.

An alternative strategy for obtaining from f; a system that looks like an
elliptical galaxy is to truncate f; at some maximum energy E,. Woolley (1954)
simply set f equal to f; for E less than E, and to zero otherwise. King (1966),
in parallel with Michie (1963), eliminated the discontinuity in Woolley’s
distribution function at E, by defining for E < E,.

fk(E) = HE) — fiE) = 2ma?)*plexpl(E, — E)/o?) — 1} (13)

Wilson (1975) subsequently eliminated the discontinuity in the gradient of fx
at E, by defining for £ < E,,

fw = Qma?) ™ plexplE, — E)/0’] — 1 — (E,— E)/o’}. (14)

Proceeding in this way one may generate a sequence of models, all of which
are effectively isothermal near their centers, where £ << E|, but which have
nonisothermal envelopes.

Hunter (1977) has shown that the structure of the envelopes of these models
depends sensitively and in a paradoxical way on the detailed form of the
distribution function near the tidal cutoff. In particular, Wilson spheres, which
have more heavily truncated distribution functions than King models, have
much more extensive envelopes. It follows from this state of affairs that one
cannot say a priori whether tidal encounters between galaxies lead to tidal
truncation of the galaxies or to distension of their envelopes. The observations
discussed below suggest the latter (Kormendy 1977; but see Strom & Strom
19784d).

As is discussed in Section 3.2, the brightness profiles at the centers of
elliptical galaxies tend to be more peaky than the projected density of an
isothermal sphere. Therefore it is interesting to study model galaxies whose
projected density profiles have a cusp at the center. Eddington (1916) showed
how to find the f(F) that generates a galaxy of any given radial density profile,
and one may apply this apparatus (Binney 1982a) to find the distribution
function f,,4(E) that generates the galaxy whose projected surface density
obeys de Vaucouleurs’ (1948) r'* law of surface brightness. One finds that
fus(E) rises steeply at energies that correspond to stars confined to the center
of the galaxy. It is this abundance of tightly bound stars that gives rise to the
central density peak and velocity dispersion depression (Bailey & MacDonald
1981) that are characteristic of the 7' model. Binney (1982a) has proposed
a theoretical interpretation of this model.
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SYSTEMS HAVING f(E,J) Eddington (1914; see also Shiveshwarkar 1936)
considered simple models, based on f = f(E, J), that can probably not be used
to describe any real system, but which do illustrate the way in which velocity
dispersion anisotropy affects the structure of spherical systems. The distribu-
tion functions of these Eddington models are of the form

fe(E.J) = fI(E) exp[—J?/(2rio™)]. (15)

The part of Eddington’s distribution function (15) that depends on J causes the
density at radius r to drop from the value [Equation (10)] associated with the
isothermal sphere to

p(0)

T+ 0/r) exp{[®(0) — ®(n]/ 07}, (16)

p(r) =
and causes each tangential component of squared velocity dispersion to dimin-
ish by a fraction 8 of the radial component of o, where

B=1-o5/o =1(r/r? + 117" (17)

Thus the velocity dispersion tensor in an Eddington model is isotropic at the
center and wholly anisotropic at large radii. The radial component of velocity
dispersion equals the constant o at all radii.

The outermost part of most Eddington models is an envelope in which
p ~ r~2. This envelope bears a superficial resemblence to the outermost por-
tion of the isothermal sphere, but it is actually of an entirely different nature
because the circular velocity v.(r) in an Eddington model tends to zero as r
increases, rather than to a finite constant as in the isothermal sphere
(ve = V20). On the other hand, the radial component of velocity dispersion
in an Eddington model is always equal to o. Therefore the gravitational
attraction of stars interior to r slows or deflects the motion of a star with typical
speed o less and less as r increases, and stars far from the core of an Eddington
model execute giant oscillations in radius. The system becomes, in fact, a kind
of stellar traffic jam in which each star moves with more or less uniform
velocity on a radial path. The p ~ r~2 increase of density toward the center
has less to do with gravity and dynamics than with congestion of these
trajectories. In terms of Equation (7), one may say that at the outside of an
Eddington model the term on the right-hand side of this equation has dropped
out, leaving the structure to be determined by a balance between the two terms
on the left.

Color gradients (de Vaucouleurs 1961, Strom & Strom 1978a,b,c¢) in prin-
ciple offer a way of constraining the degree of radial velocity anisotropy in a
galaxy. If all the stars of a galaxy were on circular orbits, so that the galaxy
could be considered to be constructed of infinitesimally thin spherical shells,
color changes could be perfectly sharp in three-dimensional space and mod-
erately sharp when projected onto the sky. If, on the other hand, the system
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resembled the asymptotic portion of an Eddington model; all stars would
contribute equally to the light at each radius, and no color gradient would be
possible.

Michie (1963) studied the models that are related to King models in the
same way that Eddington models are related to the isothermal sphere. The
distribution function of a Michie model is

MET) = fx(E) exp[—J?/Q2rio?)]. (18)

For sufficiently large anisotropy radius r,, a Michie model behaves like a King
model in that it has a “tidal radius” at which the density goes to zero. When
r, is small, the Michie model has an infinite envelope that resembles the
envelope of an Eddington model. The Michie models that are of the greatest
interest from the point of view of modeling real galaxies are those that have
finite tidal radii. In these models the anisotropy parameter 3 never comes close
to unity.

3.2 Observations of Radial Structure

PHOTOMETRY Unfortunately, many spectroscopic data cannot yet be inter-
preted dynamically because the requisite photometry is lacking. Furthermore,
the interpretation of the available photometry is more controversial than is the
interpretation of the spectroscopic observations.

It is convenient to divide the brightness profile of a typical elliptical galaxy
into an inner part that extends out to R; = 5o, where o, ~ 0.75" is the
dispersion of the central Gaussian component of a typical seeing disk, an
intermediate part that runs from this radius out to the de Vaucouleurs radius
Ry (the radius where the B brightness falls to g = 25 mag/arcsec?), and the
part that lies outside Rp. The true brightness distributions of spheroidal sys-
tems in their inner and outer parts are very difficult to measure and are
correspondingly uncertain. The profiles in the intermediate region are, by
contrast, fairly well determined.

The radial brightness profiles of a sample of 17 elliptical galaxies studied
by King (1978) are very similar to one another in the intermediate region,
though the profiles do show some genuine individuality (see Figure 1 of
Kormendy 1977). The ellipticity of King’s galaxies, which varies from € = 0
to € = 0.4, appears not to affect the mean radial :brightness profile.

A variety of fitting functions provide satisfactory fits to the profiles of
King’s galaxies in the intermediate range of radii, although Kormendy (1977)
concludes that the r'* law provides a more convenient overall fit than the
Hubble-Reynolds or King profiles. A particularly striking example of the
quality of fit to observations of ‘elliptical galaxies that can be obtained with the
r' law is provided by the extensive study by de Vaucouleurs & Capaccioli
(1979) of the surface brightness of the E1 galaxy NGC 3379. They show:that:
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the r'"* law of surface brightness fits the observations of this galaxy to within
0.1 mag over a range of 9 mag in surface brightness.

The brightness profiles of galaxies below about 26 mag/arcsec® are rather
problematical. The B-band sky brightness in these outer regions typically
exceeds the galaxian surface brightness by a factor of more than 100, so that
a small error in the choice of sky brightness level to be subtracted from the raw
observations can lead to a large error in the derived galaxian brightness profile.
Published photometry indicates that the behavior of brightness profiles beyond
Ry, is highly variable. Kormendy (1977) finds that the surface brightnesses of
King’s ellipticals always exceed that of the best-fitting r'* law at large radii,
and they sometimes exceed that of the best-fitting Hubble profile. Fhe latter
phenomenon occurs most commonly amongst galaxies that have companions,
as if elliptical galaxies are distended rather than truncated by tidal encounters.

'In a log-log plot, the brightness profiles of all of King’s galaxies steepen
fairly steadily with increasing radius. By contrast, certain supergiant galaxies
studied by Oemler (1976), Dressler (1978), Carter (1978), Hoessel et al.
(1980) and others have brightness profiles whose slopes in a log-log plot flatten
at large radii. The designation cD, which is sometimes used rather loosely, is
best confined to galaxies of this class.

The bulges of disk galaxies show a general similarity to elliptical galaxies
(e.g. Kormendy 1977, Tsikoudi 1980) although there are differences in detail.
Unambiguous information about bulges can only be obtained from the minor-
axis profiles of edge-on galaxies, for only profiles of this type are uncon-
taminated by an uncertain contribution from the disk. The bulge of the edge-on
Sb galaxy NGC 4565, which has been studied by Hegyi & Gerber (1977),
Spinrad et al. (1978), and Kormendy & Bruzual (1978) cannot be fitted over
the range 21 < u, < 28 by either a single Hubble law or a simple r'* law. It
is not known whether this phenomenon is widespread among the bulges of disk
galaxies, although Burstein (1979) finds that the profiles of edge-on SO galax-
ies also cannot be exactly fitted by the r'* law.

It has been suggested (Freeman; report to NATO ASI, Cambridge 1980)
that these differences may be due to distortion of the bulges by the grav-
itational field of the disk. It is also possible that all low-luminosity spheroidal
components, including dwarf ellipticals, have profiles that differ system-
atically from those of giant ellipticals (Strom & Strom 1979).

The true shapes of the brightness profiles of spheroidal systems at radii
comparable to the core of the point-spread function (PSF) imposed by seeing
are highly controversial. Schweizer (1979, 1981) has recently studied the
results of convolving ideal galaxy profiles with various model PSFs in some
detail. His conclusions are as follows: (a) A seeing-convolved r""* profile looks
much like an unconvolved King profile. The apparent core radius .of:this
profile is typically 3—4 times the dispersion o of the Gaussian core of the PSF.
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(b) A seeing-convolved King profile looks like an unconvolved King profile
of larger core radius. The ratio r ,,,/7. of the apparent to the true core radius
does not fall to 1.25 until r, ,,, > 3.50;. (¢) The predicted profiles are changed
materially by the inclusion in the PSF of exponential wings or additional
Gaussian components, such as those advocated by Brown (1974) and by de
Vaucouleurs & Nieto (1979).

When one reviews the apparent core radii of the galaxies studied by King
in the light of these results, one finds that the photometric data are in most
cases unable to distinguish between the possibility that these galaxies have
regions of constant density at their centers similar to that of a King model, or
have volume densities of stars that rise towards a singularity of the type
required to generate the r'* law in projection. However, external evidence
suggests that these galaxies are likely to have rather singular central densities:
Schweizer (1979) notes that the spheroidal components of the Local Group
galaxies M31 and M32 have central surface brightnesses that are 2-3 mag
brighter than those inferred by fitting King models to King’s sample of giant
ellipticals. They are, however, very much in the range of central surface
brightnesses inferred from King’s sample by fitting r'/* profiles. This suggests
that giant elliptical galaxies appear less centrally concentrated than M31 and
M32 only because they are more distant and therefore less well resolved.
Furthermore, neither counts of RR Lyrae stars and globular clusters toward the
center of our Galaxy (Oort 1976) nor studies of the gas at the Galactic center
(Lacy et al. 1979) provide any evidence that our Galaxy has a quasi-isothermal
core.

Two spheroidal components whose central regions have been carefully
studied are M87 and the bulge-nucleus of M31. Young et al. (1978b) obtained
high signal-to-noise V-band observations of the central 80" of M87. They
found that the brightness distribution near the center of M87 cannot be fitted
with a King model or a King model plus a point light source. De Vaucouleurs
& Nieto (1979) have confirmed the photometry of Young et al. and concluded
that M87 has less light in the radius range » < 8” than the r'/* law fitted to the
observations beyond r = 8" would require. The ground-based observations of
M31 by Johnson (1961), together with data collected by the balloon-borne
telescope Stratoscope II, show (Light et al. 1974) that interior to r = 20" the
brightness profile of M31 is qualitatively similar to that of M87. Again there
is a clearly defined shoulder in the brightness distribution somewhat outside
the region where seeing markedly degrades ground-based observations. Inte-
rior to this shoulder the surface brightness first flattens off and then rises again
steeply to a peak surface brightness that is determined by the PSF of the
observations. The brightness profiles of M87 and M31 are associated with the
velocity dispersion anomalies discussed below.
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SPECTROSCOPY Great strides have been made over the last six years in the
absorption-line spectroscopy of early-type systems. Until a few years ago,
very few systems had been observed spectroscopically even near their centers,
where they are brightest. Furthermore, the few measurements that were avail-
able showed a distressingly wide spread of values for the same system when
measured by different observers. The introduction of automatic algorithms for
the reduction of spectra has transformed this situation.

Two quite independent methods of obtaining kinematic information from
absorption-line spectra are now in use. The majority of workers use some
variant of the Fourier quotient technique that was originally developed by
Illingworth (1976) and Schechter (Sargent et al. 1977). Data collected in the
extensive Harvard survey of galactic velocities in the Local supercluster
(Tonry & Davis 1981a,b) have been analyzed with a cross-correlation algo-
rithm (Tonry & Davis 1979). Efstathiou et al. (1980) have found that these two
methods yield very similar results when applied to the same data. Terlevich
et al. (1981) find that velocity dispersions obtained for one galaxy by different
observers using different equipment and reduction techniques now agree to
within the ~10% cited errors. Differential velocities within galaxies are com-
monly measured to an accuracy of 20 km s™' or better.

Two types of data must be considered. The ideal study yields the velocity
dispersion and mean velocity as a function of position in the galaxy from the
center far out into the halo. Studies that approach this ideal have now been
carried out on a few dozen galaxies of type E and SO (Sargent et al. 1977,
1978, Young et al. 1978a, Schechter & Gunn 1979, Efstathiou et al. 1980,
Davies 1981, Carter et al. 1981, Illingworth & Schechter 1981, Kormendy &
Ilingworth 1982, Kormendy 1981a,b, Fried & Illingworth, in preparation,
Davies et al., in preparation). A much less time-consuming observation in-
volves measuring the systematic velocity and the velocity dispersion from a
single spectrum of the light from the center of the galaxy. Measurements of
this type have now been obtained for a few hundred galaxies of type E and SO
(Faber & Jackson 1976, Schechter 1980, Tonry & Davis 1981a,b, Faber et al.,
in preparation).

These data show that the central line-of-sight velocity dispersion o is
tightly correlated with total luminosity L. Faber & Jackson (1976) found the
velocity dispersion of a sample of 24 E and SO galaxies to be well represented
by the law L ~ o). Several subsequent investigations (Sargent et al. 1977,
Schechter & Gunn 1979, Schechter 1980, Terlevich et al. 1981, Tonry &
Davis 1981b) have confirmed that o, and L are well correlated, although the
value of the slope n when the correlation is fitted to the power law L ~ o has
varied in the range 3 < n < 5. Probably the correlation cannot be adequately
fitted by a single power law over the full range of absolute magnitudes
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(=23 <M < —15.5) for which corresponding velocity dispersions are now
available. Tonry (1981) finds that at faint luminosities, o, rises more steeply
than L"*, and Efstathiou et al. (1980) and Malmuth & Kirshner (1981) find that
luminous c¢D galaxies have smaller velocity dispersions than the extrapolation
of o, ~ L™ would suggest.

The more luminous an elliptical galaxy is, the more strongly lined is the
light it emits (e.g. Faber 1973). A useful measure of line strength is the Mg,
index defined by Faber et al. (1977). Terlevich et al. (1981) have investigated
the distribution of the representative points of galaxies in the three-
dimensional space defined by L, 0., and Mg,. They argue that in this space all
but 4 of a sample of 24 galaxies lie in a long flat volume like that occupied
by a ruler; that is, Terlevich et al. conclude that elliptical galaxies form a
two-parameter family. Tonry & Davis (1981b) have discussed the distribution
of a sample of more than 50 ellipticals in a similar three-dimensional space.
They conclude that the galaxies are distributed in this space within a long
cylinder that has three full dimensions, and they go on to argue that the
analysis of Terlevich et al. suggested that part of that sample occupies a
two-dimensional space only because the analysis failed to eliminate the elon-
gation of the cylinder occupied by the sample. Terlevich et al. reply that the
errors in the data of Tonry & Davis are too large for two-dimensionality to be
detectable. Work is now in progress on observations that should resolve this
controversy. If the main finding of Terlevich et al. is confirmed, it will be
interesting to see whether the second parameter among elliptical galaxies is,
as Terlevich et al. suggest, true ellipticity.

Whitmore et al. (1979) have measured the central velocity dispersions of 21
spiral galaxies and plotted their results against estimates of the absolute bulge
magnitudes of these systems, which span the range —17.5 > My > —22.7.
Their results are consistent with L ~ o, over this range, although the dis-
persion at a given L may be 15% lower than in an equivalent elliptical.
However, the bulges of spirals cannot be self-gravitating at all radii because
observations of neutral hydrogen in the disks surrounding them show that the
circular velocity v, = \/50;0 at large radii (Whitmore et al. 1979). If the
bulges were everywhere self-gravitating, one would have v, < \/50;0 far
from the center. Nonetheless the bulges probably are self-gravitating at their
centers.

It is remarkable that o4 should be tightly correlated with L, for ‘o, depends
on the structure of the galaxy in a small region that contributes very little of
the total light. Furthermore, the velocity dispersion in most elliptical galaxies
declines from the nucleus outward (see Figure 3 of Illingworth 1981), so that
the velocity dispersion that is so well correlated with luminosity is not the
velocity dispersion of the stars that contribute most of the light. Possible
explanations of how o and L can be correlated have been offered by Sargent
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etal. (1977) and by Tonry (1981), but before assessing the plausibility of these
pictures it is necessary to clarify one’s ideas concerning the relationship
between a galaxy’s brightness and velocity dispersion profiles and its mass-to-
light ratio.

Suppose the velocity dispersion tensor in a spherical galaxy of known
central velocity dispersion o is isotropic. Then two simple methods will lead
from surface photometry of the galaxy to a fairly reliable estimate of the
mass-to-light ratio near the center of the galaxy.

1. Fit a King model to the central brightness distribution to determine the
apparent core radius r. and central surface luminosity I, of the fit. Then
substitute these into the formula (King & Minkowski 1972)

M/L = 902,/ 2uGl,r,). (19)

The effects of seeing on results obtained with this formula are unimportant,
because seeing transforms the brightness profile of a King model into a profile
that closely resembles that of a King model of larger core radius but equal
velocity dispersion (Schweizer 1979).

2. Fit an r'* profile to the photometry to determine the effective radius r.
and the associated surface luminosity I, at r., and then substitute them into the
formula

M/L = 0.201c2,/(GLr.). (20)

This formula is derived by assuming that the observed central line-of-sight
velocity dispersion is equal to the peak line-of-sight velocity dispersion 0.469
GM /r, predicted for an r'* model of total mass M by Bailey & MacDonald
(1981), and by using the standard relation L = 7.221, 7r’ for the total light of
the r' profile. Equation (20) is to be preferred to the similar relationship that
relates M /L to the luminosity-weighted velocity dispersion @ of an r'* model
(Poveda et al. 1960), because the latter is not what is usually measured. (Half
the light of the r'* model is received at surface brightnesses fainter than
(I./4m) ~ 23 mag/arcsec’>.) When, as sometimes happens, o, is used in
Poveda’s formula in place of @, the mass-to-light ratio recovered is too great
by a factor of 2 (Michard 1980).

Schechter (1980) has used method 1 and Michard (1980) has used method
2 to derive M/L for numbers of early-type galaxies. They find
5 < (M/Lg) < 12 in solar units. The indications regarding the dependence of
M /L on L are confusing. On the one hand, two arguments suggest that M /L
should increase with L: Tinsley (1978) showed that M /L should increase as
L"" because the stars of luminous galaxies are metal rich; and if L increases
with r, less rapidly than r (Michard 1979, Kormendy 1977), L can rise as o*
only if M /L rises with L. On the other hand, neither Schechter nor Michard
(1980) were able to find any clear indications in the data that M /L increases
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with L, notwithstanding the earlier work of Faber & Jackson (1976), who
found M /L ~ L%,

Simien et al. (1979) and Whitmore et al. (1979) find similar values of M /Ly
for the bulges of spiral galaxies.

For many galaxies, velocity dispersions are available to large distances from
the center, and more sophisticated interpretation of the data is called for than
is possible by merely fitting these systems with King or 7 models. The most
general model of a spherically symmetric galaxy involves four functions of
radius: the luminosity density €(r), the radial component of the velocity
dispersion tensor oy(r), the anisotropy parameter B(r) defined by Equation
(8c), and the mass-to-light ratio M /L = A (r). The luminosity density may be
determined from good photometry, and Equation (7) relates one of the remain-
ing unknown functions to the other two. Hence if one unknown function is
chosen a priori, for example by setting 8 = constant or A = constant, the
other may, in principle, be determined from the observed run of velocity
dispersion with radius.

Sargent et al. (1978) chose to interpret their combined spectroscopic and
photometric observations of the inner 80" of M87 in terms of a model in which
B = 0 and A is allowed to vary. They concluded that under these hypotheses
the mass-to-light ratio A has to increase markedly towards the center, where
M/L ~ 60 is about a factor 10 higher than in the body of the galaxy. They
suggest that this may be due to the presence of a black hole at the center of
the galaxy.

One may argue, however, that if either A or 8 has to be arbitrarily set equal
to a constant, it makes more sense to fix A and to allow 3 to vary, rather than
vice versa. All types of elliptical galaxies seem to have similar overall mass-
to-light ratios despite the large ranges of metallicity and stellar density among
these systems. This suggests that there is a standard mix of stars out of which
elliptical galaxies are made. And the studies of rotation in giant elliptical
galaxies (see below) show unambiguously that the velocity dispersion tensors
in flattened galaxies are not isotropic, and their anisotropy has nothing to do
with rotation. Therefore we must examine carefully the possibility that the
velocity dispersion tensors in all elliptical galaxies, including spherical sys-
tems, are anisotropic.

Duncan & Wheeler (1980) have shown that the Sargent et al. data for M87
are fitted moderately well by a point light source plus an Eddington model with
a central mass-to-light ratio M /L, = 7.1. However, the model proposed by
Duncan & Wheeler has 8 > 0.9 for »r > 1.7 kpc and 8> 0.99 for r > 5.5
kpc. Such highly anisotropic distributions are not very plausible.

This situation prompted Binney & Mamon (1982) to investigate the problem
posed by observations of o(r) and 7 (r) more generally. They show that if one
presumes that the mass-to-light ratio A is (an initially unknown) constant, a
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given run of o.(r) and I(r) determine A as an eigenvalue associated with the
system of equations from which one obtains B(r). If B(r) is physically plau-
sible (in particular if 8 < 1 at all r), one has then recovered the unique
spherical model that has constant mass-to-light ratio and is compatible with the
observations. Binney & Mamon apply this technique to the Sargent et al.
observations of M87. They recover a model in which M /L, = 7.6, B < 0.9
everywhere, and 8 ~ 0.4 in the body of the galaxy.

The central region of M31 poses a problem that is in many respects similar
to that posed by M87. Setting 8 = 0 and assuming constant mass-to-light
ratio, Ruiz (1976) concluded from the photometry of Johnson (1961) and
Light et al. (1974) that the velocity dispersion g, at the center of M31 should
be smaller than that (o) at 10" by a factor of about 0.6. However, Morton et
al. (1977) and Whitmore (1980) find that o, is if anything larger than o;,. As
Tremaine & Ostriker (1982) point out, these results can be understood if (a)
B = 0 and the mass-to-light ratio in the nucleus is greater than in the bulge by
a factor of about 5, or (b) if 8 ~ 1 and the mass-to-light ratio in the nucleus
is smaller than in the bulge.

The mass-to-light ratios in spiral galaxies are known to increase from the
centers outward (e.g. Rubin et al. 1978) and one might anticipate a similar
increase of M /L toward the outer regions of elliptical galaxies. Unfortunately
the same uncertainty as to the behavior of the anisotropy parameter 8 that
makes interpretation of observations of M87 difficult bedevils attempts to
demonstrate observationally that elliptical galaxies have large M /L far from
their centers. The most convincing evidence that at least some ellipticals do
show this effect is provided by Dressler’s (1979) observations of the cD galaxy
in the cluster Abell 2029 and by observations of IC 2082 by Carter et al.
(1981). Dressler found that the velocity dispersion in his cD galaxy rises from
380 km s™! at the center to about 470 km s~' at 100 kpc. From 10-100 kpc,
the data indicate that the velocity dispersion is fairly constant at ~450 km s™*,
but Dressler notes that his measurements at 10 kpc may be affected by light
from a superposed galaxy. Dressler’s surface photometry indicates that the
volume luminosity density €(r) in this galaxy decreases as a power law
¢ ~ r>¥ over the range 10 kpc < r < 100 kpc, with the result that if the
velocity dispersion is assumed to be isotropic and constant over this range,
Equation (7) indicates that M /L rises as ~r%* between 10 kpc and 100 kpc,
or by a factor of 2.3. In fact, Dressler’s conclusion that in this galaxy M /L
increases outward seems secure so long as the velocity dispersion tensor there
is not strongly anisotropic Carter et al. (1981) find that the velocity dis-
persion in IC 2082 rises from 260 km s~' at the center to 300 km s™' at about
23 kpc. IC 2082, which lies toward the center of a Bautz-Morgan type I-1I
cluster, has a rather complex structure involving a faint nucleus ~8 kpc from
the main nucleus of the galaxy. In view of this substructure and the absence
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of complete photometry, it is difficult to arrive at a secure interpretation of the
measurements of Carter et al. However, the same arguments that led Dressler
to conclude that M /L increases toward the outside of the central galaxy in
Abell 2029, suggest that IC 2082 also has variable M /L.

In normal giant elliptical galaxies the velocity dispersion is not observed to
increase at large radii (see Figure 9 of Davies 1981). In some galaxies, for
example NGC 3379 and NGC 4472, the velocity dispersion decreases with
increasing radius as rapidly as the simplest spherical stellar models predict. In
other galaxies, notably NGC 4697, the velocity dispersion does not diminish
outward so rapidly. It is still unclear whether these variations in the behavior
of o, with r may be understood in terms of models that have constant M /L.
Binney (1980b) has shown that variations in the brightness profiles of elliptical
galaxies lead to interesting variations in the o(r) profiles of these galaxies,
even when M /L is assumed constant and the velocity dispersion tensor iso-
tropic. But it is possible that observations of some normal elliptical galaxies
may not be compatible with constant M /L at large radii.

4. NONSPHERICAL SYSTEMS

4.1 Models

For many years it was taken for granted (e.g. Sandage 1964) that galaxies are
axisymmetric oblate bodies. Recently this assumption has been questioned by
a number of workers for reasons that are part observational and part theoretical
(Stark 1977, Williams & Schwarzschild 1979, Binney 1978b, Miller & Smith
1980). At present, it would be unwise to rule out the possibility that all
elliptical galaxies are oblate and axisymmetric, but this now seems very
unlikely. In this subsection, I review the theoretical situation as regards both
axisymmetric and triaxial systems. The axisymmetric models are likely to be
good guides to the structure of nearly axisymmetric triaxial bodies in the same
way that spherical systems help us to understand the radial structure of mildly
nonspherical galaxies, and they may well have direct application as models of
any truly axisymmetric spheroidal components.

AXISYMMETRIC MODELS The energy E and the component of angular momen-
tum about the symmetry axis of the system J, are always integrals of the
motion for a star orbiting in an axisymmetric galaxy, and the simplest models
of nonspherical galaxies have distribution functions that depend only on E and
J.. These models are special in that everywhere within them the velocity
dispersion in the radial direction equals that parallel to the symmetry axis (i.e.
<va> = <v’>). This is unfortunate because in the solar neighborhood, stars
that belong to the galactic halo, for example the halo RR Lyrae stars, have
<v§> ~4 <vf> (Woolley 1978). However, there may be some systems,
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for example globular clusters, to which these models do apply, and it is useful
to consider the structure of the simplest axisymmetric models before passing
on to more general (and much more intractable) models.

Models from distribution functions Prendergast & Tomer (1970; henceforth
referred to as PT) pioneered the study of models based on f(E,J,) by construct-
ing models based on distribution functions of the form

fEJ) = i) exp(W./0?)  E<E,
-0 E=E, 1)

where f; is defined by Equation (9). Near the center of these models the rotation
speed <v, > rises as <vy,> = ()R and is constant on cylinders. At points that
are more than halfway to the tidal surface, the rotation speed declines with
increasing radius and, in fact, vanishes at the tidal surface itself. In the outer
portion the rotation speed is approximately constant on spheroids.

The flattening of the isodensity surfaces in the PT models reflects the shape
of the rotation curve. At the center and near the tidal surface, the isodensity
surfaces tend to be round, so that the galaxy is strongly flattened only near the
peak in the rotation curve. Hunter (1977) has shown that any distribution
function that is the product of a function of E and a function of J, must generate
a model whose isodensity surfaces become spherical at the center.

Wilson (1975) used an improved version of the computational method
introduced by PT to construct models whose distribution functions are of the
form

fEJ) = fw(E) explQ)./0? = 3a*(QUW./0?)’]  (E <E), (22)

where fi is given by Equation (14) and a is an additional parameter. When
a # 0, this distribution function differs from that of PT only in that its energy
dependence is that of a Wilson sphere rather than that of a Woolley model. The
general characteristics of these models are very similar to those of the PT
models. The parameter a in Equation (22) causes the rotation curve to flatten
off at a radius that is independent of the tidal radius. Unfortunately, when
a # 0 the outer part of the model becomes elongated along the symmetry axis,
which is rather unphysical. For this reason Wilson considered only values of
a at which the second term in the exponent of Equation (22) was comparatively
unimportant.

It is a pity that a distribution function has not been devised that generates
models with isodensity surfaces whose ellipticity is nearly independent of
radius and whose rotation curves are correspondingly flat. This is because the
observations of early-type disk galaxies (see below) indicate that the spher-
oidal components of these galaxies have such characteristics. A device that
was introduced by Lynden-Bell (1962a) and improved by Hunter (1975) might
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be employed to guide one in the choice of a more appropriate distribution
function. Lynden-Bell showed how, given the density distribution of a galaxy
having f(E,J,), one may recover the part f, of f that is even in J,. The part
f- that is odd in J, cannot be recovered from p(R,z), but it is possible that it
is determined by <v,>(R,z). In either of its present forms, Lynden-Bell’s
technique requires that p(R,z) be extended to a complex analytic function of
R and @, which makes the method difficult to formulate numerically and has
until now restricted the technique to rather unrealistic density distributions.

An interesting application of Lynden-Bell’s device is found in the work of
Lake (1981a,b) on prolate galaxies. Lake first recovered the f, (E,J;) that
generates a type of prolate Plummer model. In these models the density is
infinite on the symmetry axis of the system, and this is reflected in f.
containing a Dirac delta-function of J,. Lake modified f, by smearing the
delta-function out into a peak of finite width, and then solved for the density
structure associated with the modified form of . using the methods employed
by PT. In this way he obtained a prolate model whose density is nowhere
infinite. This model is probably of only academic interest, since prolate galax-
ies are very unlikely to have <vy> = <v’>, but it is a nice illustration of
how Lynden-Bell’s device may be profitably employed in the future.

The problem of constructing general axisymmetric models in which
f=f(EJ,)and <vi> # <v>>>, as is required by observations of the galactic
halo, will normally take one beyond the range of validity of Jeans’ theorem
because it requires that one take into account the complexities to which the
“third integral” gives rise. As indicated in Section 2, many (perhaps most)
orbits in a reasonably smooth potential respect three isolating integrals, which
in an axisymmetric potential we may denote E, J, and I;. If one knew the
analytic form of I3(x,v;®), one might construct models by treating it on a par
with E and J; (Lynden-Bell 1962b). But a simple expression does not exist for
15, even for the regular orbits, and Jeans’ theorem breaks down soon when
orbits exist that are neither ergodic nor regular.

Schwarzschild (1979) has developed a technique for constructing self-
consistent models around a given density distribution that works even in the
presence of irregular orbits. He follows a large number of orbits in the poten-
tial associated with his chosen density distribution and then uses a linear-
programming technique to populate a selection of these orbits. This is done in
such a way that the time-averaged density contributed by these orbits to each
of a large number of cells throughout the system equals the density originally
assumed. Schwarzschild developed this technique to handle the difficult prob-
lem of constructing triaxial galaxies, but it is eminently well suited to the
construction of general axisymmetric galaxies. Richstone (1980, 1982) has
employed a variant of this method to build a special type of axisymmetric
galaxy—that in which the isodensity surfaces are similar spheroids and
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p ~ R7% It is to be hoped that more general models of this type will be
constructed in the near future.

Models from moment equations The next best thing to a solution of the
coupled Vlasov and Poisson equations is information about the relationships
that hold between the velocity moments of a galaxy of given density distribu-
tion. Satoh (1980) used the Jeans equations to derive the velocity dispersion
o(R,z) and the rotation speed <v,>(R,z) of a galaxy of given density on the
assumption that the velocity dispersion in the system is everywhere isotropic.
The density distributions studied by Satoh are modified Plummer models in
which p ~ R7? at large R in the equatorial plane, and p ~ z° far out along the
symmetry axis. The curves of <vs>(R,0) peak many core radii from the
center and then flatten off until the circular velocity has fallen to a value nearly
equal to <v,>(R,0). The velocity dispersion in these models falls steeply with
increasing radius.

Binney (1980b) has applied the tensor virial theorem to the volumes of
systems that are bounded by isodensity surfaces to estimate <v,>(R,0), using
a number of assumptions about the way in which <v,> varies with R and z
and the degree of anisotropy of the velocity dispersion tensor. The systems
studied included model galaxies in which p ~ (R* + z2/¢*)~* at large R and
z (g being the axial ratio), and models of three of the galaxies studied photo-
metrically by King (1978). These models suggest that one cannot depress
<v,> to the degree that is required by the observations (see below) unless the
velocity ellipsoids have principal axes that near the center align with the
equatorial plane, rather than with the radial direction. The rotation curves that
King’s galaxies would require if their velocity dispersion tensors were iso-
tropic rise very steeply near the center and then become remarkably flat. The
velocity dispersion in these galaxies should decline slowly with increasing
radius.

N-body models N-body models are superior even to exact solutions of the
Vlasov equation in one important respect: they are easily tested for stability.
Against this signal advantage must be set their cumbersomeness and the
difficulty encountered by older programs in handling both large numbers of
particles and large density contrasts. Fortunately, algorithms have now been
developed by (among others) van Albada (1982), Villumsen (1982), and
McGlynn & Ostriker (in preparation) that are able to combine the flexibility
as regards density contrasts of programs that calculate forces by direct sum-
mation over all particles (e.g. Ahmad & Cohen 1973) with the ability of the
Fourier approach to the force calculation to handle enormous numbers of
particles. ‘

One makes a galaxy model with an N-body code by allowing particles to
relax to a steady state from some initial configuration. The initial conditions
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generally are a homogeneous distribution within some boundary, with a Gaus-
sian velocity dispersion superposed on some degree of rigid-body rotation.
However, as Gott (1975) has emphasized, galaxies are unlikely to have re-
laxed from homogeneous initial configurations. This is unfortunate since the
numerical experiments show that the initial conditions from which relaxation
occurs influence the final state.

Gott (1973), Gott & Thuan (1976), Miller (1978), Miller & Smith (1979),
Hohl & Zang (1979), van Albada (1982), and others have studied the collapse
of rotating spheres of stars, while Binney (1976), Aarseth & Binney (1978),
and Miller & Smith (1981) have studied the collapse of initially flattened
stellar distributions. These investigations show the following. (a) Systems
formed by relaxation from homogeneous initial configurations are as centrally
concentrated as are galaxies only if the initial conditions are very cold. (b) In
the absence of dynamically significant rotation of the initial state, initially
spherical systems relax to spheres and initially flattened systems relax to
spheroids. (c) The velocity ellipsoids of relaxed systems have a strong radial
bias in the outer regions, and become in the almost homogeneous core either
isotropic (if the system is spherical) or oblate and aligned with the figure of
the system (if the system as a whole is flattened). In the latter case, f # f(E,J.).
(d) Rapidly rotating initial configurations form tumbling bars rather than
highly flattened axisymmetric bodies. Hohl & Zang (1979) find that the flattest
axisymmetric body that can be formed from a rotating homogeneous stellar
sphere is E2. Axisymmetric bodies of flattening as high as E7 can be formed
by the relaxation of flattened nonrotating initial configurations.

These results indicate that phase mixing and violent relaxation (Lynden-Bell
1967) work too inefficiently to be capable of imposing a uniform stamp on
elliptical galaxies. However, the collapse calculations show that plausible
initial conditions will lead to the formation of systems that closely resemble
the galactic halo and nearby elliptical galaxies.

TRIAXIAL MODELS Collapse calculations of the type just described suggest
that triaxiality is likely to be common whether the initial configuration is one
of rapid or slow rotation. Indeed if the initial configuration is not axially
symmetric and the rotation of the initial state is dynamically unimportant, it
is hard to see what might determine a particular body axis as an axis of
symmetry. Aarseth & Binney (1978) and Wilkinson & James (1982) have
verified that systems that relax from slowly or nonrotating triaxial
configurations do form triaxial galaxies that appear to be long-lived (but see
Sanders & van Albada 1979). If, however, the initial state is one of rapid
rotation, the system is found to form a tumbling. bar that has no axis of
symmetry (Miller & Smith 1979, Hohl & Zang 1979).

While it is easy to form individual bars with an N-body program, it is
difficult to isolate the general principles of bar dynamics. Schwarzschild’s
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construction of stellar bars from individual orbits in a given potential (1979
and work in progress) helps one come closer to these general principles. This
work and that of Wilkinson & James (1982) indicate that the backbone of a
slowly rotating stellar bar is a population of stars on orbits that may be
considered epicyclic developments of the closed orbit that lies along the long
axis of the potential. These orbits may or may not have a definite sense of
circulation about the long axis of the system, but they have a definite sense of
circulation about either of the shorter axes of the system only if the figure of
the potential rotates. Then they circulate with respect to the figure in the same
sense as that of the figure with respect to inertial space. This suggests, and the
available N-body models confirm, that there is a fairly tight connection be-
tween the pattern speed with which the figure of the bar rotates and the speed
with which the stars stream with respect to the figure; bars that have large
pattern speeds show strong streaming motions with respect to the pattern of the
bar. In particular, it should be possible (in principle) to estimate the pattern
speed of a bar from a knowledge of the magnitude of the overall circulation
and an estimate of the axial ratios of the bar. Conversely, if one can argue that
the pattern speed of a particular galaxy must be small, because its brightness
profile shows no sign of a characteristic radius where corotation or a Lindblad
resonance may occur, it may be possible to use the magnitude of the stellar
rotation velocity close to the center of the galaxy to limit the deviation of the
figure of the galaxy from axial symmetry.

Resonances are bound to play an important role in the dynamics of triaxial
elliptical galaxies, and one would certainly expect the brightness profiles of
such galaxies to show features at the characteristic radii of such resonances.
It is possibly worth recalling in this connection the elliptical rings that have
been found by Malin & Carter (1980) on high-contrast prints of elliptical
galaxies.

4.2 Observations of Nonspherical Structure

PHOTOMETRY A number of authors have studied the shapes of the isophotes
of elliptical galaxies during the last five years (King 1978, Carter 1979,
Bertola & Galletta 1979, di Tullio 1979, Williams & Schwarzschild 1979,
Leach 1981). The key points to have emerged from this work are the fol-
lowing.

1. The isophotes of ellipticals show little or no deviation from pure ellipses.
This contrasts with the box-like shapes of the bulges of some lenticular
galaxies.

2. The ellipticity €(r) can vary with semimajor axis length r in a complex
way. The isophotes generally do not tend to become circular near the center
as models that have distribution functions of the form f = g(E)h(J,) require,
though di Tullio (1979) finds that this type of behavior is characteristic of the
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brightest galaxies in clusters and groups. The isophotes of isolated galaxies
usually become more elliptical as the center is approached, and every type of
variation of e(r) occurs in general group and cluster members.

3. In some galaxies the major axes of different isophotes are not parallel to
one another—that is, the isophotes are twisted. This phenomenon would not
be possible if elliptical galaxies were axisymmetric and dust-free. It is readily
understood if the isodensity surfaces of ellipticals are coaxial but triaxial
ellipsoids, for then changes in the axial ratios of these ellipsoids would lead
to the isophotes twisting on the sky (e.g. Mihalas & Binney 1981). Alternative
explanations are that the isodensity surfaces are not coaxial, or that absorption
by dust substantially alters the brightness profiles of these systems. Neither of
these seems particularly attractive.

Statistical studies of the frequency with which elliptical galaxies of various
apparent axial ratios occur have shown that the data may be accounted for very
satisfactorily under any hypothesis as to the true shapes of elliptical galaxies:
the galaxies may be oblate or prolate figures of revolution or any of the triaxial
ellipsoids that lie between these extremes (Binney 1978a, Noerdlinger 1979,
Binggelli 1980, Binney & de Vaucouleurs 1981). Under any hypothesis, the
commonest ratio of the shortest to the longest body axes lies near 0.6:1. If
most ellipticals are prolate, there must be more nearly spherical galaxies than
if the oblate type is commonest.

If elliptical galaxies were identical prolate bodies, the central surface bright-
ness of the best-fitting r'/* profile of an apparently round galaxy would be
higher than the corresponding quantity for an apparently highly elongated
galaxy—and vice versa if galaxies were all oblate bodies. Attempts to detect
such a correlation between surface brightness and apparent ellipticity (Mar-
chant & Olson 1979, Richstone 1979) have tentatively concluded that the
galaxies are more likely to be oblate than prolate. Lake (1979) has discussed
the possibility that there is a similar correlation between ellipticity and central
line-of-sight velocity dispersion. He concludes from a small data set that the
galaxies studied may be prolate.

Galletta (1980) has confirmed that the most pronounced isophotal twists
tend to occur in E1 and EQ galaxies. Only a small shift in the relative lengths
of the body axes of successive isodensity surfaces in a nearly spherical galaxy
is required to interchange the major and the minor axes and thus swing the
apparent major axis through 90°.

The relative orientation of optical galaxies and any associated gas, dust, and
radio components may lead to inferences about the shape of the optical galaxy
(Bertola & Galletta 1978). Gas clouds are expected to settle quickly into
closed orbits (Tohline et al. 1981). At most radii the only suitable closed orbits
circulate about either the longest or shortest body axes of the potential (Hei-
ligman & Schwarzschild 1979, Binney 1981); thus the plane of any dust or gas
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disk may be assumed to define one of these fundamental planes. Furthermore,
observation suggests (Kotanyi & Ekers 1979) that radio jets tend to emerge
along the rotation axes of these disks, just as one might expect if the radio
sources are powered by accretion of the material of the disks onto compact
objects. If radio axes are good tracers of the body axes of ellipticals, it is
interesting that Battistini et al. (1980) find no evidence that radio axes align
with the apparent principal axes of a sample of 51 galaxies, for this would
indicate that these (abnormal) galaxies are strongly triaxial. Van Albada et al.
(1981) have discussed the possibility of determining the angular velocity of the
figures of radio galaxies from their radio structure.

SPECTROSCOPY The mean stellar rotation velocity has now been measured
along the major axis of a few dozen elliptical galaxies out to radii r > 2 kpc
at which the rotation curves cease to rise steeply. Some rotation is normally
detected. By contrast, attempts to detect streaming motions along the apparent
minor axes of normal galaxies have not yet produced unambiguous evidence
of minor-axis rotation (Williams 1979, Schechter & Gunn 1979). However,
Jenkins & Scheuer (1980) find that two of three radio galaxies show minor-
axis rotation.

The major-axis rotation curves are generally characterized by a steep rise
just outside the center, followed by a long, flat or slightly falling portion.
Exceptions to this pattern do occur, however. For example, Efstathiou et al.
(1980) find that the rotation speed of the E1 galaxy NGC 5813 peaks 5" from
the nucleus and then drops steeply to zero.

It is convenient to discuss the rotation of spheroidal components in terms of
the relationship between a characteristic ellipticity € and the ratio v,/ o of the
peak line-of-sight rotation speed v, to the central velocity dispersion o. Figure
1 plots the relationship between these variables for elliptical galaxies. Evi-
dently € is not correlated with v,/ 0.

This result enables one to eliminate immediately the simplest picture of an
elliptical galaxy—that in which the galaxy is an oblate spheroid in which the
velocity dispersion is everywhere fairly isotropic and rotational-streaming is
responsible for the galaxy’s flattening [the isotropic oblate (I0) picture]. In
fact, the flat rotation and velocity dispersion profiles of ellipticals imply that
the projected central velocity dispersion should be nearly equal to the rms
velocity dispersion through the entire galaxy; in addition, the projected peak
rotation velocity in the 10 picture should differ from the rms rotation velocity
by a factor that depends in a simple way on the inclination angle i between the
symmetry axis of the system and the line of sight. On the other hand, in this
picture the apparent axial ratio of the galaxy also depends on the inclination
[ in a simple way, so that as i varies, the representative point of the galaxy
in Figure 1 will move along a well-defined path. By good fortune, in the IO
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picture this path nearly coincides with the curve formed by the representative
points, as estimated from the tensor virial theorem (Binney 1978a) of 10
models that have i = 90° and various true flattenings. This curve is marked IO
in Figure 1. If elliptical galaxies were rotationally flattened oblate figures of
rotation, their representative points would lie close to these nearly coincident
lines, rather than scattered all over the lower portion of the diagram.

It has been suggested that despite the wide scatter of the observational points
in Figure 1, the true shapes of elliptical galaxies may be due to rotation, but
the rotation of prolate bodies that tumble end over end (Miller & Smith 1980).
It is easy to understand that if elliptical galaxies were tumbling bars, there
could be no tight correlation between € and v,/ o; when such a bar is viewed
down its rotation axis it has large € and small v, / o, and just the reverse when
it is viewed down its long axis. In fact, the representative points of a single
tumbling bar would occupy a more or less triangular region, two of whose
sides run parallel to the axes in Figure 1, depending on the orientation of the
bar to the line of sight. Hence in this picture one would expect the representa-
tive points of a number of galaxies to lie close to the v,/ o axis in Figure 1
(where in fact there are no points). Furthermore, if one assumes that the

T | I | | I
1.2 ‘ -
10k .
[ )
P .
. o
1
0.6

Figure I The ratio v,/ o of the maximum line-of-sight rotation velocity to the mean velocity
dispersion is plotted against ellipticity e for 33 elliptical galaxies (circles). The full line shows the
relationship between v,/ and e that is predicted by the tensor virial theorem in the isotropic oblate
(I0) picture. If the galaxies conform to the isotropic prolate (IP) picture, half the representative
points would lie above the broken line. The squares mark the representative points of the bulges
of three disk galaxies—NGC 3115, M31, and M&81. [Adapted from Illingworth & Schechter
(1981) by permission].
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velocity dispersion in these bars is always isotropic, one may again apply the
virial theorem and the distribution of true ellipticities that are required of such
bars if the predicted distribution of apparent ellipticities is to match the ob-
served distribution, to predict the expected distribution of points in Figure 1.
The line in the figure marked IP is such that half of the points should lie above
this line. Evidently elliptical galaxies cannot be prolate bars having isotropic
velocity distributions.

Recent work on the bulges of early-type disk galaxies indicates that these
systems are quite unlike ellipticals, in that rotation probably accounts for their
flattenings. Kormendy (1981a) and Illingworth and co-workers (Kormendy &
Illingworth 1982, Illingworth & Schechter 1981, Verter et al., in preparation)
have mapped the velocity fields of a few normal lenticular and spiral galaxies.
When they extract from their observations the probable rotation patterns of the
bulges of these systems, they find (a) the ratio of rotational to random kinetic
energy in these systems is nearly equal to that expected in the IO picture (see
Figure 1); (b) the shapes of the rotational curves of these galaxies are similar
to those of giant ellipticals; near the center <v,> rises steeply and then
becomes constant; and (c) most of these systems rotate as if they were con-
structed of rigid coaxial spheroids, although one galaxy, NGC 4565, which
has a box-shaped bulge, rotates on cylinders.

Kormendy (1981b) has studied the kinematics of six barred lenticulars. He
finds that the bulges of these galaxies rotate at least as rapidly as the 10 picture
would suggest. Some of the bulges that appear to be triaxial rotate even faster
than in the IO picture. This is to be expected if these bulges are tumbling bars
that have near-isotropic velocity dispersion tensors.

Work undertaken by Davies et al. (in preparation) suggests that the differ-
ences between the rotation properties of giant ellipticals and those of the
bulges of disk galaxies are related to differences in the luminosities of these
two types of system; the absolute magnitudes of the bulges that contribute to
Figure 1 lie in the range —18 > My > —21, whereas the great majority of the
elliptical galaxies contributing to this figure have My < —20.5. Davies et al.
find that all very-low-luminosity ellipticals rotate as rapidly as bulges of the
same luminosity. Why this should be so is not clear.

5. SUMMARY AND PROSPECTS

Despite rapid progress in recent years, our understanding of spheroidal com-
ponents remains imperfect. Some of the more important questions that have
to be answered are the following.

1. What is the structure of the nuclei of spheroidal systems? How common
are cusps of brightness at the centers of galaxies? Are the structures of these
cusps affected by massive black holes at their foci? What relationship have
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these stellar structures to active galactic nuclei and quasars? High-resolution,
high signal-to-noise photometry and further work on the dynamics of systems
whose distribution functions are of the form f(E,J) are required to elucidate
these questions.

2. Do normal giant elliptical galaxies have massive halos? The rotation
curves of disk galaxies tell us that the mass distributions of these galaxies are
more extensive than the light distributions of their bulges. Dynamical argu-
ments (Ostriker & Peebles 1973, Efstathiou et al. 1982) suggest that this
additional mass is not associated with the disks, so we may conclude that these
bulges have massive halos. Furthermore, radial velocities of cluster galaxies
suggest that the mean mass-to-light ratio near the centers of rich clusters is
very much higher (M /Ly = 200; Faber & Gallagher 1979) than the mass-to-
light ratios (M /Ly < 10) that are indicated by the internal motions of the
galaxies. Since most of the light from the central region of a compact rich
cluster (such as that in Coma) comes from spheroidal components, it is
probable that these spheroidal components either possess or have possessed
massive halos. However, the uncertainties associated with interpreting veloc-
ity dispersion profiles in dynamical terms, and the difficulty of pushing spec-
troscopic observations to very low surface brightnesses, are such that it has not
been demonstrated that any normal elliptical galaxy has a massive halo.
Dressler’s (1979) work on the cD galaxy in the cluster Abell 2029 presents the
strongest case for a massive halo around an elliptical galaxy.

3. Are spheroidal components normally triaxial? Further observations of gas
disks and dust lanes within and around elliptical galaxies should help us to
elucidate this fundamental question, as would a better understanding of the
dynamics of triaxial systems. Do the apparent major axes of the bulges of
many disk galaxies run, like that of the bulge of M31, not exactly parallel to
the major axis of the surrounding disk? If spheroidal components are triaxial,
are they predominantly oblate or prolate?

4. What are the pattern speeds of triaxial spheroidal components, and how
do these speeds relate to the observed streaming motions within elliptical
galaxies and the bulges of disk galaxies? It has yet to be demonstrated that
triaxial systems are possible that (like giant elliptical galaxies) have nearly
singular central densities and rather flat rotation curves, and yet have no
obvious features in their density profiles at the characteristic radii of reso-
nances. The very nearly featureless brightness profiles of elliptical galaxies
suggest that the speeds at which their figures rotate must be very small, and
it is not clear that such small pattern speeds will permit appreciable rotation
very close to the centers. One possibility is that spheroidal components be-
come axisymmetric oblate bodies at a radius that is smaller than the radius of
the first important resonance.

5. Why do the bulges of disk galaxies rotate rapidly and giant elliptical
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galaxies slowly? Does this difference in rotation speeds reflect only the differ-
ent luminosities of the two types of system? Can one account in detail for the
observations of bulges with models in which the velocity dispersion tensor is
isotropic?

It may be many years before we possess a satisfactory understanding of the
shapes and internal motions of most spheroidal components. The two most
urgent theoretical tasks involve the construction of axisymmetric models,
which remain of great interest since many spheroidal components may turn out
to be axisymmetric, and the structure of axisymmetric models is anyway likely
to help us understand nearly axisymmetric triaxial galaxies. Two types of
axisymmetric models are urgently needed. Recent observations of the bulges
of disk galaxies and of dwarf ellipticals call for models based on distribution
functions f(E,J,). The problem here is choosing a distribution function that
generates a model whose isodensity surfaces are nearly similar ellipsoids and
whose rotation curve is rather flat. Observations of giant elliptical galaxies and
of the kinematics of stars in the solar neighborhood call for more general
models in which <v3> # <ov’> and the distribution function is not a func-
tion of just the classical integrals E and J..

In the observational area the greatest need is now for high-quality surface
photometry of all types of spheroidal components. Photometric observations
are every bit as vital as spectroscopic measurements for developing our under-
standing of the dynamics of spheroidal components, and there is a strong case
for correcting the imbalance that has arisen in the allocation of scarce telescope
time between spectroscopic and photometric observations.
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