AN ATLAS OF STELLAR SPECTRA WITH AN OUTLINE OF SPECTRAL CLASSIFICATION Morgan * Keenan * Kellman

Table of Contents

- INTRODUCTION
- THE O5-F2 STARS
- The O Stars
- 09.5
- B0
- B0.5
- B1
- B2
- B3
- B5
- B8

The Spectrum of Draconis

- The A Stars
- B9
- A0

A1

- A2
- A3
- A5
- A 7
- F0
- F2
- The Peculiar A Stars
- The Metallic-Line Stars
- The Spectrum of $\lambda \underline{\text { Bootis }}$
- THE F5-M STARS

F5

- F6
- F8

G0

- G2

G5
G8

- K0

K2

- K3

K5

- The M Stars

THE SUPERGIANTS OF CLASSES B8-M2

FIVE COMPOSITE SPECTRA

CONCLUSION

Plate 1: O5-B0 Standards, Plate 2: Two Wolf-Rayet Stars, Plate 3: Main Sequence 09-B9, Plate 4: Supergiants O9.5-A0, Plate 5: Luminosity Effects at O9 Plate 6: Luminosity Effects at O9.5,

Plate 7: Luminosity Effects at B0, Plate 8: AG Pegasi = BD 114673 , Plate 9: Luminosity Effects at B0.5, Plate 10: Luminosity Effects at B1 Plate 11: Luminosity Effects at B2, Plate 12: The Be Stars and Phi Persei,

Plate 13: The Bnn Stars, Plate 14: P Cygni, Plate 15: Luminosity Effects at B3 Plate 16: Luminosity Effects at B5, Plate 17: Luminosity Effects at B8, Plate 18: The Peculiar Stars Beta Lyr and Nu Sgr,

Plate 19: Main Sequence B8 - A2, Plate 20: Supergiants A0-F0 Plate 21: Luminosity Effects at A0, Plate 22: Main Sequence A2-F0, Plate 23: The "Metallic-Line Star" 63 Tauri, Plate 24: Two Peculiar A Stars,

Plate 25: Luminosity Effects at A3, Plate 26: Luminosity Effects at A5, Plate 27: The Spectrum of 17 Leporis, Plate 28: Luminosity Effects at A7, Plate 29: Main Sequence F0 - M2, Plate 30: Supergiants F0 - K5

Plate 31: Luminosity Effects at F0, Plate 32: The Peculiar F Stars Beta CrB and Gamma Equ, Plate 33: The Cluster-Type Variable RR Lyrae, Plate 34: The Variable Star SU Tau, Plate 35: Luminosity Effects at F6 Plate 36: Normal Giants F8 - K5,

Plate 37: Luminosity Effects at F8, Plate 38: High Luminosity Stars at F8, Plate 39: The Cepheid Variable X Cygni, Plate 40: Luminosity Effects at G0 Plate 41: Luminosity Effects at G5, Plate 42: The High-Velocity Star Boss 2527,

Plate 43: The Variable Star V Vul, Plate 44: Luminosity Effects at G8, Plate 45: The High-Velocity Star Delta Leporis Plate 46: Luminosity Effects at K0, Plate 47: High Luminosity Stars at K1, Plate 48: Luminosity Effects at K3,

Plate 49: High Luminosity Stars at K3, Plate 50: Luminosity Effects at K5 Plate 51: The M Giant Sequence, Plate 52: The M Sequence as a Temperature Sequence, Plate 53: Luminosity Effects in the Early M Giants, Plate 54: A Carbon Star and a Long Period Variable, Plate 55: The Banded Stars in the Visual Region

```
Next
```


1. INTRODUCTION

The Atlas of Stellar Spectra and the accompanying outline have been prepared from the viewpoint of the practical stellar astronomer. Problems connected with the astrophysical interpretation of the spectral sequence are not touched on; as a consequence, emphasis is placed on "ordinary" stars. These are the stars most important statistically and the only ones suitable for large-scale investigations of galactic structure. The plan of the Atlas can be stated as follows:
a) To set up a classification system as precise as possible which can be extended to stars of the eighth to twelfth magnitude with good systematic accuracy. The system should be as closely correlated with color temperature (or color equivalent) as is possible. The criteria used for classification should be those which change most smoothly with color equivalent.
b) Such a system as described under (a) requires a classification according to stellar luminosity, that is, the system should be two-dimensional. We thus introduce a vertical spectral type, or luminosity class; then, for a normal star, the spectrum is uniquely located when a spectral type and a luminosity class are determined. The actual process of classification is carried out in the following manner: (1) an approximate spectral type is determined; (2) the luminosity class is determined; (3) by comparison with stars of similar luminosity an accurate spectral type is found.

As it may not be immediately apparent why an increase in accuracy in spectral classification is desirable, a short digression on some problems of stellar astronomy will be made.

The problem of stellar distribution in the most general sense does not require any spectroscopic data. Stars of all types and temperatures may be considered together, and some general features of the distribution of stars in the neighborhood of the sun can be found. For this purpose a certain frequency distribution of stellar luminosities must be assumed. This luminosity function has a large dispersion and must be varied with Galactic latitude. In addition, there are certain regional fluctuations in the frequency of stars of higher luminosity of classes B, A, and M .

As a result of these considerations (and because of difficulties with interstellar absorption) the general method has very definite limitations; the large dispersion of the luminosity function means we must have a large sample, and this in itself precludes detailed analyses of limited regions. In addition, there is evidence of clustering tendencies for stars of certain spectral types - a cluster or star cloud might be well marked for stars of type A, for example, and be not at all apparent from a general analysis of star counts.

There is, then, for certain kinds of problems a great advantage in the use of spectral types of the accuracy of the Henry Draper Catalogue. Consider, for example, the stars of classes B8-A0 as a group. The dispersion in luminosity is far less than in the case of the general luminosity function, and the space
distribution of stars of this group can be determined with a correspondingly higher accuracy. In addition, we are able to correct for systematic errors due to interstellar absorption from observations of the color excesses of these stars. We have thus gained in two particulars: we have limited at one time the dispersion in luminosity and in normal color.

The further refinement of a two-dimensional classification makes possible an even greater reduction in the dispersion in absolute magnitude for groups of stars. The mean distance of a group of stars of the same spectral type and luminosity class can be determined with great precision, even when the group consists of a relatively small number of stars. Even for individual stars distances of good accuracy can be derived. A corresponding gain is made in problems concerned with intrinsic colors and interstellar absorption.

In the fifty-five prints which make up the accompanying atlas an attempt has been made to show most of the common kinds of stellar spectra observed in stars brighter than the eighth magnitude. The dispersion selected is intermediate between that used for very faint stars, where only a few spectral features are visible, and the larger-scale slit spectra which show a multitude of details. A sufficient number of lines and bands are visible to allow an accurate classification to be made, both by temperature and by luminosity equivalent, while the relatively low dispersion makes it possible to observe bright and faint stars in a uniform manner and avoids the possibility of appreciable systematic differences in their classification.

A small one-prism spectrograph attached to the 40 -inch refractor was used to obtain the plates. The reduction of collimator to camera is about 7 ; this makes it possible to use a fairly wide slit and still have good definition in the resulting spectra. The spectrograph was designed by Dr. Van Biesbroeck and constructed in the observatory shop by Mr. Ridell. The camera lens was constructed by J.W. Fecker, according to the design of Dr. G.W. Moffitt. The usable spectral region on ordinary blue-sensitive plates is from the neighborhood of K to $\mathrm{H}^{3}(\lambda \lambda 3920-4900)$.

The dispersion used (125 A per mm at $\mathrm{H} \mathrm{y}^{\prime}$) is near the lower limit for the determination of spectral types and luminosities of high accuracy. The stars of types F5-M can be classified with fair accuracy on slit spectra of lower dispersion, but there is probably a definite decrease in precision if the dispersion is reduced much below 150 A per mm .

The lowest dispersion capable of giving high accuracy for objective-prism spectra is greater; the limit is probably near 100 A per mm . The minimum dispersion with which an entirely successful twodimensional classification on objective-prism plates can be made is probably near 140 A per mm . This value was arrived at from a study of several plates of exquisite quality taken by Dr. J. Gallo, director of the Astronomical Observatory at Tacubaya, Mexico; for plates of ordinary good quality the limit is probably considerably higher.

The Atlas and the system it defines are to be taken as a sort of adaptation of work published at many observatories over the last fifty years. No claim is made for originality; the system and the criteria are
those which have evolved from a great number of investigations. Specific references to individual investigations are, as a rule, not given.

By far the most important are those of the investigators at Harvard and Mount Wilson. The idea of a temperature classification is based on the work of Miss Maury and Miss Cannon at Harvard and of Sir Norman Lockyer. We owe to Adams the first complete investigation of luminosity effects in stellar spectra. If we add to this the work of Lindblad on cyanogen and the wings of the Balmer lines in earlytype stars and the investigations of the late E.G. Williams, we have the great majority of the results on which the new classification is based. References to individual papers are given in the Handbuch der Astrophysik.

The present system depends, then, to a considerable extent on the work of these investigators, combined with data which were not available until recently. These data are of two kinds: accurate color equivalents for many of the brighter stars and accurate absolute magnitudes for a number of the same stars. These results have been used to define the system of classification more precisely, both in the temperature equivalents and in the luminosity class. The most important of the determinations of color equivalents for this purpose are the photoelectric colors of Bottlinger and of Stebbins and his collaborators and the spectrophotometric results of the Greenwich Observatory and those of Hall.

The absolute magnitudes used depend on a variety of investigations. There are the classical catalogue of trigonometric parallaxes of Schlesinger; the catalogue of dynamical parallaxes of Russell and Miss Moore; various cluster parallaxes, principally due to Trumpler; and, in the case of the stars of earlier class, parallaxes from interstellar line intensities and from the effects of galactic rotation.

Throughout the discussion emphasis will be laid on the "normal" stars. A number of peculiar, objects are noted; but the main aim of the investigation has been to make the classification of the more frequent, normal stars as precise as possible for the use of the general stellar astronomer. This investigation is not concerned with the astrophysical aspects of stellar spectra or with the spectra of the dwarfs of low luminosity. Relatively few of the latter are met with among stars brighter than the eighth magnitude, and their classification can be considered as a separate problem.

There appears to be, in a sense, a sort of indefiniteness connected with the determination of spectral type and luminosity from a simple inspection of a spectrogram. Nothing is measured; no quantitative value is put on any spectral feature. This indefiniteness is, however, only apparent. The observer makes his classification from a variety of considerations - the relative intensity of certain pairs of lines, the extension of the wings of the hydrogen lines, the intensity of a band - even a characteristic irregularity of a number of blended features in a certain spectral region. To make a quantitative measure of these diverse criteria is a difficult and unnecessary undertaking. In essence the process of classification is in recognizing similarities in the spectrogram being classified to certain standard spectra.

It is not necessary to make cephalic measures to identify a human face with certainty or to establish the race to which it belongs; a careful inspection integrates all features in a manner difficult to analyze by
measures. The observer himself is not always conscious of all the bases for his conclusion. The operation of spectral classification is similar. The observer must use good judgment as to the definiteness with which the identification can be made from the features available; but good judgment is necessary in any case, whether the decision is made from the general appearance or from more objective measures.

The problem of a classification according to luminosity is a difficult one. In the first place, lines or blends which may be useful at one spectral type may be quite insensitive at another. In fact, some lines which show a positive absolute-magnitude effect for some spectral classes may show a negative one for others. This is true for certain lines of H, Sr II, and Ba II.

Besides the variation with spectral type, there is also a very marked change in appearance with the dispersion of the spectrograms used. Some of the most useful indicators of absolute magnitude are lines and blends which can be used only with low dispersion. The hydrogen lines, for example, show marked variations with absolute magnitude in spectra as early as B2 and B3 on plates of low dispersion; with higher dispersion the wings which contribute to the absolute-magnitude effect are not apparent to the eye, and the lines look about the same in giants and dwarfs. In stars of classes G2-K2 the intensity of the $C N$ bands in the neighborhood of $\lambda 4200$ is one of the most important indicators of absolute magnitude. The band absorption has a different appearance on spectrograms of high and low dispersion, and it is doubtful whether high-dispersion plates show the luminosity effects of $C N$ as well as those of low dispersion.

On the other hand, a considerable number of sensitive line ratios are available on high-dispersion spectra which cannot be used with lower dispersion. One of the most sensitive lines to absolute-magnitude differences for the F8-M stars is $B a$ II 4554; this line is too weak to be observed on low dispersion spectra. A number of the other ratios found by Adams to be sensitive indicators of absolute magnitude are also too weak to be used with low dispersion.

These considerations show that it is impossible to give definite numerical values for line ratios to define luminosity classes. It is not possible even to adopt certain criteria as standard, since different criteria may have to be used with different dispersion. In the Atlas some of the most useful features for luminosity classification have been indicated, but it should be emphasized that each dispersion has its own problems, and the investigator must find the features which suit his own dispersion best.

The luminosity classes are designated by Roman numerals; stars of class I are the supergiants, while those of class V are, in general, the main sequence. In the case of the B stars the main sequence is defined by stars of classes IV and V. For the stars of types F-K, class IV represents the subgiants and class III the normal giants. Stars of class II are intermediate in luminosity between the supergiants and ordinary giants.

2. THE O5-F2 STARS

The varying degree of diffuseness in line character for stars earlier than class F5 presents an additional difficulty in their classification. On plates having a dispersion of around 30 A per mm the lines have such a varied appearance that it is almost impossible to classify the spectra on a uniform system. If the dispersion is reduced to lessen this effect, the lines in general become fainter.

The best compromise seems to be a dispersion of around 125 A per mm and greatly broadened spectra on high-contrast plates. Spectra of this dispersion can be classified with high accuracy for stars of classes OB5 inclusive, if a fine-grain emulsion is used. The varying widths of the spectral lines are not very noticeable, except for a very few stars with exceedingly broad lines.

Spectra of classes B9-A2 are most difficult of all to classify accurately. All lines with the exception of the Balmer series are weak, and the broad-line stars show few spectral features that can be used. By the time class A3 is reached, numerous metallic lines make their appearance, and classification becomes progressively easier on passing toward lower temperature.

Dispersions higher than 125 A per mm can be used to classify the early-type stars, if a certain rough ratio is preserved between the dispersion and the spectrum width. For the highest accuracy the width of the spectrum should be about one-third the distance between $\mathrm{H} \gamma$ and H 6 . With plates of higher dispersion a corresponding reduction in the magnifying power of the viewing eyepiece should be made. For spectra later than Fo a width of about one-sixth the distance between $\mathrm{H} \%$ and H is sufficient, unless the dispersion is less than 125 A per mm. Wide spectra for the late-type stars allow the use of the G band and other important blended features. The advantage of using broad spectra is somewhat similar to that of extrafocal images in stellar photometry.

TABLE 1.
 CLASSIFICATION OF THE O STARS

HD 165052...	07	O6	17:59	-24 24	6.8 Oe5	1
S Mon..........	07	07	6:35	+9 59	4.7 Oe5	
ξ Per.	07	3:52	+35 30	4.1 Oe5	
λ Ori A........	O8	O8	5:29	+9 52	3.7 Oe5	
1. Ori..	09 V	O9	5:30	-5 59	2.9 Oe5	3
10 LAC.........	09 V	O9	22:34	+38 32	4.9 Oe5	3
HD 188209...	09 I	19:49	+46 47	5.5 B0	4
HD 218915....	091		23:06	+5231	7.1 B0	4

NOTES

1. No emission lines visible on low-dispersion spectrograms. He II 4686 is much stronger than $\lambda 4650$.
2. The H lines are abnormally broad in comparison to other absorption lines.
3. Main-sequence star. Luminosity differences at O 9 are shown by the following ratios:
$\lambda 4068$: $\lambda 4089, \lambda 4387: \lambda 4541$, and $\lambda 4650$: $\lambda 4686$.
4. O-type supergiants.

Next

Contents
Previous

1. The O Stars

No luminosity classification has been attempted for stars earlier than O9. The spectral type has been determined from the ratio He I 4471: He II 4541. The types determined from this ratio appear to be consistent with the appearance of other spectral features in a sequence of effective excitation. The types obtained in this manner are in very close agreement with those determined by H.H. Plaskett. (1)

Plate 1. O5-B0 Standards

If the spectral types of the O stars are determined from the single ratio of the absorption lines He I 4471: He II 4541, results accurate to a tenth of a class between O5 and O9 can be obtained on plates of the dispersion used (125 A per mm at H 7). This single ratio appears to be the most useful criterion of spectral type for 05-09 stars on spectra similar to those used. The classification of the Wolf-Rayet stars as a group will not be discussed; the number of stars in this class is very small, and individual description of each spectrum seems to be necessary.

Plate 2. Two Wolf-Rayet Stars

The standard O stars are listed in Table 1. Notes concerning spectral features for some of the stars are given; in the case of those of class O 9 , luminosity differences are also noted.

Plate 3. Main Sequence O9-B9

${ }^{1}$ Pub. Dom. Ap. Obs., 1, 365, 1922. Back.

2. 09.5

At class O9.5 the line at $\lambda 4200$ is intermediate in intensity between O9 and B0. He I 4541 is weaker than in class O9.

Plate 4. Supergiants O9.5-A0

TABLE 2
STANDARDS AT 09.5

Star	MKK	a	6	m HD Notes
9 Cam...	O9.5 I	04:44	$+66^{\circ} 10^{\prime}$	4.4 B0
S Ori....	O9.5 III	05:26	-00 22	2.5 B0
σ Ori....	09.5 V	05:33	-02 39	-3.8 B0
ζ Ori....	09.5 III	05:35	-02 00	$2.1 \mathrm{B0}$
SOph...	09.5 V	16:31	-10 22	2.7 B0 1
19 Cep..	09.5 I	22:02	+61 48	5.2 Oe5

1. The He I lines are exceedingly broad - considerably broader than in such Bnn stars as ${ }^{\eta}$ UMa and γ Gas. The lines are intermediate in width between ${ }^{\eta}$ UMa and ${ }^{\phi}$ Per. The interstellar K line appears to be abnormally strong for the spectroscopic luminosity. The line He II 4686 is strong on low-dispersion plates taken especially to minimize the effect of the broad lines. The spectroscopic luminosity is similar to that of σ Ori.

The absolute-magnitude differences are shown by the ratios $\lambda 4068$: $\lambda 4089, \lambda 4119: \lambda 4144, \lambda 4387: \lambda$ 4516 , and $\lambda 4650$: $\lambda 4686$.

Plate 5. Luminosity Effects at O9

Plate 6. Luminosity Effects at O9.5

Next

3. B0

The line at $\lambda 4200$ is very much weaker than λ 4387. Si IV 4089 is stronger than Si III 4552 . The blend near $\lambda 4650$ is sharply defined on the violet side.

TABLE 3
 STANDARDS AT BO

Star	MKK	RA	DEC	m HD Notes		
Y Cas.... $_{\phi_{1} \text { Ori... }}^{\text {On IV }}$	$00: 50$	$+60^{\circ} 11^{\prime}$	var B0p	1		
Ori....	B0 III	$05: 29$	+925	4.5	B0	
א Ori...	B0 I	$05: 31$	-116	1.8	B0	
§Sco...	B0 II	$05: 43$	-942	2.2	B0	
τ Sco...	B0 IV	$15: 54$	-2220	2.5	B0	
	B0 V	$16: 29$	-281	2.9	B0	2

1. Spectrograms taken on January 6, 1941. No emission lines visible.
2. The luminosity appears to be definitely lower than any other star in the table.

Luminosity differences are shown by the ratios λ 4009: $\lambda 4089, \lambda 4072$: $\lambda 4089$, and $\lambda 4119$: $\lambda 4144$. The line He II 4686 is present in class V.

Plate 7. Luminosity Effects at B0

Plate 8. AG Pegasi $=$ BD 114673

Contents
Previous

4. B0. 5

The blend at $\lambda \lambda 4640-4650$ is strongest at the red edge and is intermediate in appearance between B0 and B1. Si III 4552 is approximately equal to Si IV 4089. Luminosity differences are shown by the lines of O II near $H \%$. They are very strong in the spectrum of the supergiant κ Cas. The line ratios used for luminosity classification are λ 3995: $\lambda 4009, \lambda 4119: \lambda 4144, \lambda 4349: ~ \lambda 4387$, and $\lambda 4416: \lambda 4387$.

TABLE 4 STANDARDS AT B0.5

Star	MKK	a	δ	m	HD
к CAs...	B0.5 I	$0: 27$	$+62^{\circ} 23^{\prime}$	4.2	B0
ع Per.....	B0.5 III	$3: 51$	+3943	3.0	B1
139 Tau..	B0.5 II	$5: 51$	+2556	4.9	B2
β Sco....	B0.5 IV	$15: 59$	-1932	2.9	B1

Plate 9. Luminosity Effects at B0.5

Next Contents Previous

5. B1

The blend at $\lambda \lambda 4640-4650$ is fairly uniform in intensity; the red edge may still be slightly stronger, however. Si III 4552 is stronger than Si IV 4089, and the broad blend near $\lambda \lambda 4070-4076$ is well marked. The line ratios used for luminosity classification are λ 3995: $\lambda 4009, \lambda 4121: \lambda 4144, \lambda 4144$: $\lambda 4416$, and $\lambda 4387$: λ 4416. The Si III lines and the wings of the H lines are also sensitive to luminosity differences.

TABLE 5 STANDARDS AT B1

Star	MKK	a	σ	m	HD
o Per....	B1 IV	$03: 38$	$+31^{\circ} 58^{\prime}$	3.9	B1
క Per....	B1 I	$03: 47$	+3135	2.9	B1
$\eta_{\text {Ori.... }}$	B1 V	$05: 19$	-0229	3.4	B1
β CMa....	B1 II-III	$06: 18$	-1754	2.0	B1
ε CMa....	B1 II	$06: 54$	-2850	1.6	B1
P Leo....	B1 I	$10: 27$	+0949	3.9	B0p
a Vir....	B1 III-IV	$13: 19$	-1038	1.2	B2
σ Sco...	B1 III	$16: 15$	-2521	3.1	B1
β Cep...	B1 IV	$21: 27$	+7007	3.3	B1

Plate 10. Luminosity Effects at B1

6. B2

The blend near $\lambda 4072$ is weaker than at B1. Si II 4128-4130 is fainter than in class B3. The luminosity classes were determined from the ratios λ 3995: $\lambda 4009, \lambda 4121: \lambda 4144, \lambda 4387$: $\lambda 4552$ and from the appearance of the wings of the hydrogen lines. The stars y Peg and ζ Cas are located between classes B2 and B3.

NOTES
 TABLE 6 STANDARDS AT B2

Star	MKK	a	0	m	HD	Notes
7 Peg......	B2.5 IV	0:08	$+14^{\circ} 38$			
ζ Cas	B2.5 IV	0:31	+5321			
7 Ori.	B2 IV	5:19	+616	1.7		
χ^{2} Ori.....	B2 I	5:58	+208	4.7	B2p	
π Sco...	B2 IV	15:52	-25 50	3.0		
P Oph......	B2 V	16:19	-23 13	5.2		1
θ Oph......	B2 IV	17:15	-24 54			
λ Sco......	B2 IV	17:26	-372			
9 Cep......	B2 I	21:35	+6138		B2p	2
$12 \mathrm{Lac} . .$.	B2 III	22:37	+39 42		B2	

1. The He I lines are as strong as in other B 2 stars and are considerably stronger than at class B5. The H lines are strong and broad; this has been taken to be an effect of low luminosity in a B 2 spectrum rather than a reason for classifying the star as B 5 . The H lines are somewhat weaker than in $\Pi^{\top} \mathrm{UMa}(\mathrm{B} 3)$. All spectral lines are very broad. 2. The star 9 Cep is a pronounced supergiant but spectroscopic evidence (λ 3995: λ 4009, $\lambda 4387$: $\lambda 4552$, intensity of H lines) indicates that it is definitely less luminous than X Ori.

The luminosity effects are so well marked at B2 that there is no ambiguity in the location of any of the stars in the five luminosity classes used.

Plate 11. Luminosity Effects at B2

Plate 12. The Be Stars and Phi Persei

Plate 13. The Bnn Stars

Plate 14. P Cygni

$$
\mathrm{Next}
$$

7. B3

The blend Si II 4128-4130 is stronger than at class B2, relative to He I 4121. The luminosity classification depends on the ratios λ 3995: $\lambda 4009$ and $\lambda 4121: \lambda 4144$ and on the appearance of the wings of the H lines.

TABLE 7
 STANDARDS AT B3

Star	MKK	a	δ	m	HD	Notes
¢ Cas....	B3 III	01:47	+63 ${ }^{\circ} 11^{\prime}$	3.4		1
T Aur.....	B3 V	04:59	+4106		B3	
X Aur.....	B3 I	05:26	+3207			
o^{2} CMA...	B3 I	06:58	-23 41			
ๆUMa....	B3 V	13:43	+49 49			2
1. Her.....	B3 IV	17:36	+4604		B3	
- Sgr.....	B3 IV-V	18:49	-2625		B3	
55 Cyg....	B3 I	20:45	+45 45			

1. The lines He I 4026 and 4471 are considerably weaker than in other B3 stars. The broad H wings observed for stars of luminosity class V are not seen.
2. A very broad, faint K line has been observed on low-dispersion spectra of ${ }^{\eta} \mathrm{UMa}$. This line appears to be definitely stellar in origin.

Plate 15. Luminosity Effects at B3

| Next Contents Previous |
| :--- | :--- |

Next Contents Previous

8. B5

The spectral type is determined from the ratio of Si II 4128-4130 to He I 4144. The luminosity class is determined from the appearance of the wings of the hydrogen lines.

TABLE 8 STANDARDS AT B5

Star	MKK	a	δ	m	HD
SPer.....	B5 III	$03: 35$	$+47^{\circ} 28^{\prime}$	3.1	B5
TCMa...	B5 I	$07: 20$	-2906	2.4	B5p
א Hya...	B5 V	$09: 35$	-1353	5.0	B3
τ Her.....	B5 IV	$16: 16$	+4633	3.9	B5
67 Oph...	B5 I-II	$17: 55$	+0256	3.9	B5p

Plate 16. Luminosity Effects at B5

Next

Previous

9. B8

The spectral type is determined principally from the ratio of Si II 4128-4130 to He I 4144. The luminosity class is determined from the appearance of the wings of the hydrogen lines.

TABLE 9 STANDARDS AT B8

Star	MKK	a	δ	m	HD
$\beta_{\text {Per..... }}$	B8 V	$3: 01$	$+40^{\circ} 34^{\prime}$	2.2	B8
I Tau..... 3 Ori.....	B8 III	$3: 41$	+2348	3.0	B5p
$\beta_{\text {Tau..... }}$	B8 I a	$5: 09$	-819	0.3	B8p
$\beta_{\text {CMi.... }}$	B8 III	$5: 20$	+2831	1.8	B8
a Leo.....	B8 V	$7: 21$	+829	3.1	B8
$\beta_{\text {Lib...... }}$	B8 V	$10: 03$	+1227	1.3	B8
	B8 V	$15: 11$	-91	2.7	B8

Plate 17. Luminosity Effects at B8

Plate 18. The Peculiar Stars Beta Lyr and Nu Sgr

\square

10. The Spectrum of ζ Draconis

From the lines of He I, $M g$ II, and Si II the spectral type would be judged to be B8. The Balmer lines are very peculiar; they are weak but do not have the sharp-edged appearance associated with high luminosity. A superficial examination might indicate that the star belongs in luminosity class II at B8. A comparison with the A0 Ib star ${ }^{\eta}$ Leo shows, however, that the shape of the Balmer lines - in particular H δ and Hz - is not similar to a high-luminosity star; the contours of the H lines are more nearly like those in an early B-type dwarf.

The trigonometric parallax of ζ Dra is $0 " .039 \pm 7$ (two modern determinations). The absolute magnitude is probably fainter than zero, and it is likely that the star lies somewhat below the main sequence.

11. The A Stars

Of all spectral types from B to M the stars of class A are the most difficult to classify. The spectral lines are weak and may be greatly broadened; in addition, the frequency with which peculiar spectra are encountered makes any sort of accurate classification a difficult problem.

Plate 19. Main Sequence B8-A2

When spectra of very low dispersion are used, the classification seems to be a rather simple matter. If the C-stars and peculiar objects are omitted from consideration, the growth of K with respect to the hydrogen lines from B9 to F0 appears to be smooth and rapid and a sensitive criterion of spectral type. When spectra of higher dispersion are examined, however, it is seen that the intensity of K is by no means a unique indicator of spectral type. Stars are frequently encountered whose spectra have many characteristics of class F , while the K line indicates a class of A 2 or A 3 . To make the problem even more difficult, it appears that the colors of these stars are in disagreement with the type derived from the K line and probably correspond to the later class indicated by certain other spectral features.

From investigations of several galactic clusters by Titus it appears that these pseudocomposite spectra may have a high space frequency and a corresponding importance in problems of stellar astronomy. As the problem of their classification is of considerable importance, the spectra of several of the brightest objects of this class will be described in detail later.

In addition to these "metallic-line" A stars, there are several other groups of peculiar spectra. Stars of these classes form only a small fraction of the total, and their peculiarities can be recognized in general
on low-dispersion spectrograms. It is possible, then, to eliminate them from problems in which mean absolute magnitudes or color indices are used.

The B9-F0 stars have been reclassified with the particular object of obtaining as pure a temperature sequence as is possible. In the early A subdivisions the general increase in intensity of the enhanced lines of iron and titanium appears to be closely correlated with color, while for the later subdivisions the Mn I blend near $\lambda 4032$ appears to be the most useful index of type on spectrograms of the dispersion used. The supergiants are discussed in another place.

Plate 20. Supergiants A0-F0

12. 39

The line He I 4026 is weaker relative to K than in class B8. He I 4471 is considerably fainter than $M g$ II 4481.

TABLE 10 STANDARDS AT B9

Star	MKK	a	δ	m	HD
§Crv.....	B9 V	$12: 24$	$-15^{\circ} 58^{\prime}$	3.1	A0
Y Lyr.....	B9 III	$18: 55$	+3233	3.3	A0p
a Peg.....	B9 V	$22: 59$	+1440	2.6	A0

The luminosity classification is based on the appearance of the wings of the H lines.
Plate 19. Main Sequence B8-A2

13. A0

The lines of He I are faint or absent in the dwarfs. The strongest enhanced lines of iron are faintly present in main-sequence stars and increase in strength with increasing luminosity. The hydrogen lines show a marked negative absolute-magnitude effect.

TABLE 11
 STANDARDS AT A0

Star	MKK	a	6	m	HD Note
C Hya....	A0 V	08:20	$-03^{\circ} 35^{\prime}$		A0
Y UMa....	A0 V	11:48	+5415		A0
$a \mathrm{CrB}$....	A0 V	15:30	+2703		A0
$a \mathrm{Lyr}$...	A0 V	18:33	+3841		A0
© Cyg.....	A0 III	19:41	+4453		A0
NOTE					
1. The hydrogen lines in \S Cygni have less pronounced wings than in the other stars listed. Dr. Kuiper has found that the measures of the visual system made during the last 30 years indicate a dynamical parallax of 0 ".013-0".018.					

The luminosity classification was made on the basis of the wings of the hydrogen lines.
Plate 21. Luminosity Effects at A0

Vext
 Contents
 Previous

14. A1

The metallic lines are stronger than at class A0. The blend Mn I 4030-4034 is first well seen in this class. The line $\lambda 4385$ is stronger relative to $\lambda 4481$ than in class A 0 .

TABLE 12 STANDARDS AT A1

Star	MKK	a	δ	m	HD
Yem......	AI V	$06: 31$	$+16^{\circ} 29^{\prime}$	1.9	A0
a CMa......	AI V	$06: 40$	-1635	-1.6	A0
a Gem A...	AI V	$07: 28$	+3206	2.0	A0
β UMA....	AI V	$10: 55$	+5655	2.4	A0

The luminosity class was determined from the appearance of the wings of the hydrogen lines. It is possible that the wings are slightly less pronounced in the spectrum of $\gamma \mathrm{Gem}$ than in the other stars listed.

15. A2

The line at $\lambda 4385$ is stronger relative to $M g$ II 4481 than in class A1. The blend at $\lambda 4129$ is considerably stronger than Mn I 4030-4034.

TABLE 13
STANDARDS AT A2

Star	MKK	a	δ	m	HD
$\beta_{\text {Aur........ }}$	A2 IV	$05: 52$	$+44^{\circ} 56^{\prime}$	2.1	A0p
$\lambda_{\text {UMa....... }}$	A2 IV	$10: 11$	+4325	3.5	A2
CUMa(br)..	A2 V	$13: 19$	+5527	2.4	A2p
$\beta_{\text {Ser......... }}$	A2 IV	$15: 41$	+1544	3.7	A2
$\eta_{\text {Oph....... }}$	A2 V	$17: 04$	-1536	2.6	A2

Luminosity differences are shown by the ratios of the blends $\lambda \lambda 4128-4131: \lambda \lambda 4171-4179$, by the intensity of the blend centered near $\lambda 4555$, and by the appearance of the wings of the hydrogen lines.

Plate 22. Main Sequence A2-F0

16. A3

The spectral type is determined from the intensity of the blend at $\lambda 4032$ and the ratio $\lambda 4300: \lambda 4385$. The luminosity class depends on the ratios $\lambda 4416: \lambda 4481, \lambda 4175: \lambda 4032$, and $\lambda 4226: \lambda 4481$, and on the appearance of the wings of the H lines.

TABLE 14
 STANDARDS AT A3

Star	MKK	$a-6$	m HD	Notes
38 Lyn....	A3 V	09:12+37 ${ }^{\circ} 14^{\prime}$	3.8 A2	
β Leo.....	A3 V	11:44 +1508	2.2 A2	1
§ UMa...	A3 V	12:10 +57 35	3.4 A2	
ζ Vir.	A3 V	13:29-00 05	3.4 A2	
γ UMi.....	A3 II-III	15:20 +72 11	3.1 A 2	2
§Her....	A3 IV	17:10 +24 57	3.2 A2	3
$a \mathrm{PsA} . . .$.	A3 V	22:52-30 09	1.3 A 3	4

NOTES

1. The hydrogen lines are weaker in the spectrum of ${ }^{\beta}$ Leo than in the other dwarfs listed.
2. The hydrogen lines in $\gamma \mathrm{UMi}$ are narrower than in the other stars in the table; the broad wings associated with low luminosity are absent.
3. The lines are very broad, and the classification is uncertain.
4. a PsA gives spectroscopic evidence of having the lowest luminosity of any star in the table.

Plate 25. Luminosity Effects at A3

Next
 Contents
 Previous

17. A5

The principal line ratio for determining the spectral type is $\lambda \lambda 4030-4034$: $\lambda \lambda 4128-4132$. The luminosity class is determined from the ratios $\lambda 4417: \lambda 4481$ and $\lambda 4417$: $\lambda 4300$.

TABLE 15
STANDARDS AT A5

Star	MKK	a	δ	m	HD
Cas...	A5 V	$01: 19$	$+59^{\circ} 43$	3.0	A5
β Ari....	A5 V	$01: 49$	+2019	2.7	A5
β Tri.....	A5 III	$02: 03$	+3431	3.1	A5
g UMa...	A5 V	$13: 21$	+5531	4.0	A5
a Oph....	A5 III	$17: 30$	+1238	2.1	A5

Plate 26. Luminosity Effects at A5

Plate 27. The Spectrum of 17 Leporis

The Spectrom of 17 Leporis

mexamess of Ng L 488: On piates of hahex doperyon the specievin is seien to be eaceesongly cowpiex; beth The iettrustifs and posetres of the hime are vanable, the ipectra, of the uperguants a Cyght and e Autigae art siosia for cowtpanion Eastinas Pecess

18. A7

The ratios $\lambda \lambda$ 4030-4034: $\lambda \lambda 4128$-4132 and λ 4300: $\lambda 4385$ were used to determine the spectral type. The luminosity classes depend on the ratio $\lambda 4417$: $\lambda 4481$.

TABLE 16 STANDARDS AT A7

Star	MKK	a	δ	m	HD
Y Boo....	A7 III	$14: 28$	$+38^{\circ} 45$	3.0	F0
a Aq1....	A7 V	$19: 45$	+836	0.9	A5
a Cep....	A7 V	$21: 16$	+6210	2.6	A5

Plate 28. Luminosity Effects at A7

19. F0

The spectral type is determined from the ratio $\lambda \lambda 4030-4034$: $\lambda \lambda 4128-4132$ and the appearance of the spectrum in the neighborhood of $\lambda 4300$. The luminosity class is determined from the relative intensity of $\lambda 4172$ and $\lambda 4132$ (red edge of broad blend) and the ratio $\lambda 4172: \lambda 4226$.

TABLE 17 STANDARDS AT F0

Star	MKK	a	δ	m	HD Note			
Leo....	F0 III	$10: 11$	$+23^{\circ} 55$	3.7	F0			
	γ Vir....	F0 V	$12: 36$	-00	54	2.9	F0	1
	Her....	F0 III	$16: 17$	+19	23	3.8	F0	
	Cep...	F0 V	$22: 11$	+56	33	4.2	F0	

1. The spectral type is that of the integrated light of the two components.

Plate 29. Main Sequence F0-M2

Plate 31. Luminosity Effects at F0

Plate 32. The Peculiar F Stars Beta CrB and Gamma Equ

20. F2

The ratio of intensity $\lambda \lambda 4030-4034$: $\lambda \lambda 4128-4132$ is greater than in the corresponding luminosity class at F0. A shading is observed degrading toward the red from $\lambda 4300$. The luminosity class is determined from the ratios $\lambda 4171: \lambda 4226$ and $\lambda 4077$: $\lambda 4045$.

TABLE 18
 STANDARDS AT F2

Star	MKK	a	σ	m	HD
β Cas....	F2 III	$00: 03$	$+58^{\circ} 36$	2.4	F5
SGem....	F2 IV	$07: 14$	+2210	3.5	F0
u UMa....	F2 III	$09: 43$	+5931	3.9	F0
78 UMa...	F2 V	$12: 56$	+5654	4.9	F0
U Boo.....	F2 V	$14: 30$	+3011	4.5	F0
SSer......	F2 IV	$17: 55$	-0341	4.6	F0
π Sgr.....	F2 II	$19: 03$	-2111	3.0	F2

Plate 30. Supergiants F0 - K5

21. The Peculiar A Stars

The most frequently encountered of the peculiar A stars are the "silicon," "'strontium," and "manganese" groups and the so-called "metallic-line" stars. The spectra of the last-named consist essentially of features which seem to belong to two different spectral types and are considered separately.

The silicon and strontium stars can be identified on spectrograms of fairly low dispersion, but a satisfactory description of the details can be made only from medium- or high-dispersion spectra. Some of the brighter of the peculiar stars whose spectra can be used as prototypes are described below.
a And. - B9p. Manganese. The lines of Mn II are abnormally strong. On considerably widened, fine-grain spectrograms having a dispersion of 125 A per mm at $H y$ a number of peculiar faint lines are visible, which are sufficient to distinguish this type of spectrum from others.

1. Lib, - B9p. Silicon. The K line is very faint. The appearance of the wings of the H lines indicates that the star is brighter than the ordinary main-sequence stars.
θ Aur. - A0p. Silicon. The K line is exceedingly faint. The lines of Cr II vary in intensity. The star appears to be of luminosity class III and is brighter than the main sequence. The absolute magnitude is probably around - 1 to -2 .
a CVn (brighter). - A0p. Silicon-Europium. The spectrum is exceedingly complex and requires the highest dispersion for adequate study. The lines of $S i$ II and $E u$ II are both strong. Many spectral lines vary in intensity. The appearance of the wings of the hydrogen lines indicates that the star is more luminous than an ordinary A dwarf. The absolute magnitude is probably around - 1 to -2 .
¿UMa. - A0p. A number of peculiar features which distinguish the spectrum of 78 Vir are present but are in general fainter. The Si II lines are not abnormally strong. The K line and a number of other spectral features vary in intensity within a period of a few days. This star is the brightest of the "spectrum variables."

17 Com. - A2p. Chromium-Europium. The spectrum is similar to 78 Vir. The K line is weak. The star is a member of the Coma cluster.

78 Vir. - Chromium-Europium. The general level of excitation corresponds roughly to an A2 star. There may be a faint, broad K line superposed over the sharp component. The blended feature at $\lambda 4171$, indicative of strong $C r$ II, is outstanding on spectrograms of low dispersion. Si II is weak; the blend at λ 4128 - $\lambda 4132$ is not due principally to Si II but is indicative of a "europium star." The K line is weak. 78 Vir is a member of the Ursa Major cluster.

73 Dra. - Ap. Strontium-Europium-Chromium. A number of the lines, including $\lambda 4077$ and $\lambda 4215$, are variable in intensity. The K line is about as strong as in a normal B 8 spectrum. The effective excitation is considerably lower than in $a \mathrm{CVn}$ and the spectrum is crowded with metallic lines.
l. Cas. - A5p. Strontium.

Y Cap. - Strontium. The spectrum can be classified as near F0 III. The strontium line at $\lambda 4077$ is abnormally strong but not so strong as in $\gamma E q u$. In both spectra the line is stronger than in any normal luminosity class at F0. There is no well-marked absolute-magnitude effect for $\lambda 4077$ at F0; this is near the place at which the effect changes from a negative one (early A-stars) to the strongly positive one observed in the F5-M stars.

Y Equ. - Strontium-Europium. The type is near F0, but the spectrum is so peculiar that a luminosity class cannot be determined. The Sr II lines $\lambda 4077$ and $\lambda 4215$ are stronger than in any other F0 star observed at Yerkes. This should not, however, be taken as evidence of high luminosity, since $S r I I$ is insensitive to luminosity changes near F0 and more sensitive lines do not indicate that the star is a supergiant. The blend at $\lambda \lambda 4128-4132$ is strong, but this is not due to $S i$ II. In stars later than A0 it appears to be indicative of the presence of $E u$ II.
$\beta^{C r B}$. - Chromium-europium. The spectral type is near F 0 , but the spectrum is so peculiar that no luminosity class can be estimated. The blend at $\lambda \lambda 4128-4132$ is very strong; this appears to be indicative of strong $E u$ II and not of abnormal strength of the $S i$ II doublet. The blend at $\lambda 4171$ is strong; this is an indication of abnormal strength of Cr II. A considerable amount of the intensity of the line near $\lambda 4077$ is due to blended lines of $C r$ II. The lines of $E u$ II may be stronger than in any other bright star, with the possible exception of the spectrum-variable HR 5355.

Plate 24. Two Peculiar A Stars

Generalities. - The manganese stars appear to be present at $\mathrm{B} 8-\mathrm{B} 9$, the silicon stars at $\mathrm{B} 9-\mathrm{A} 0$, the europium stars at A0-F0, and the strontium stars at A0-F0. These groups can all be identified on lowdispersion spectrograms, but any kind of detailed discussion requires higher dispersion. The bright silicon stars observed at Yerkes appear to be around 1 or 2 mag. above the main sequence at B9 and A0. All the peculiar groups of stars lie near class A, and an association with the maximum intensity of the hydrogen lines is suggested.

Contents
Previous

22. The Metallic-Line Stars

63 Tau. - The K line has an intensity about equal to a star of class A1. The general metallic-line spectrum resembles closely the star Leo (F0 III). 63 Tau is in the Taurus cluster and has an absolute magnitude of +2.8 . As ζ Leo is certainly much more luminous, the absolute-magnitude effect observed for 63 Tau is a false one. There seems to be no explanation of the spectrum on the basis of two normal stars.
a Gem ($f t$). - The spectral type from the K line is about A 1 ; from the metallic lines it is about A5. All lines appear to originate in one star, since a Gem (ft) is a spectroscopic binary with only one spectrum visible.
$\zeta_{U M a}(f t)$. - The spectral type from the K line is about A 2 and from the metallic lines is around $\mathrm{A} 7 . \zeta$ $\mathrm{UMa}(\mathrm{ft})$ is a member of the Ursa Major cluster and has an absolute magnitude of about +2.0 .
¿Ser. - The spectral type from the K line is near A2 and from the metallic lines about A7.
a^{2} Lib. - The spectral type from the K line is about A 3 and from the metallic lines near A 7 . The absolute magnitude is probably in the neighborhood of +1.5 .
 appears to be an ordinary main-sequence star of type F0. The intensities of the lines are closely similar to s Cep.

15 UMa.- The spectral type from the K line is around A 3 the metallic lines appear to be fairly similar in intensity to ${ }^{\rho}$ Pup (F6 II). The absolute-magnitude effect observed is probably false, as 15 UMa has a proper motion of $0^{\prime \prime} .132$.
τ UMa. - The K line has an intensity similar to a normal A3 star. The metallic-line spectrum matches closely that of P Pup (F6 II). The high absolute magnitude indicated from the metallic lines is probably illusory; τ UMa has a proper motion of 0 ".122.

Plate 23. The "Metallic-Line Star" 63 Tauri

> Next Contents Previous

23. The Spectrum of λ Bootis

The spectral type of λ Boo is near A 0 , as far as can be determined. The spectral lines, while not unusually broad, are very weak, so that the only features easily visible are a weak K line and the Balmer series of hydrogen. The trigonometric parallax indicates that the star is probably located below the main sequence. The star θ Hya has similar, but less pronounced, spectral peculiarities. It may be a highvelocity star.

3. THE F5-M STARS

24. F5

The G band is observed as a broad absorption with the violet part of the band somewhat stronger than the red edge. Fe I 4045 and $\lambda 4226$ are very much weaker than $\mathrm{H} \gamma$ and H .

TABLE 19 STANDARDS AT F5

Star	MKK	a	σ	m	HD
a Tri......	F5 III	$01: 47$	$+29^{\circ} 06^{\prime}$	3.6	F5
Gem...	F5 III	$06: 39$	+1300	3.4	F5
a CMi....	F5 IV	$07: 34$	+0529	0.5	F5
110 Her...	F5 IV	$18: 41$	+2027	4.3	F5
β Del....	F5 III	$20: 32$	+1415	3.7	F5
1. Peg....	F5 V	$22: 02$	+2451	4.0	F5

The most sensitive criteria of luminosity are the ratios of $\lambda 4077$ to $\lambda 4226$ and to the $F e \mathrm{I}$ lines at λ 4045 and $\lambda 4063$.

Plate 30. Supergiants F0 - K5
swpergants with a stushied equence of sters of sumion lumnsuly

of 6 - hand (FO-KS) , wath of 24246 relative to $\pi \mathrm{r}(\mathrm{rS}-\mathrm{NS})$, srouth
of the tirnd at $\mathrm{A} 405(65-\mathrm{kS})$, and the rilative werwty of the two

ins live ot K5. Cremer iniosped Specal

Plate 34. The Variable Star SU Tau

25. F6

The G band is slightly stronger than at class F5. Fe I 4045 and $\lambda 4226$ are stronger relative to HY and H O .
The ratios of $\lambda 4077$ to $\lambda 4226$ and to the $F e$ lines at $\lambda \lambda 4045 ; 4063$, and 4071 are sensitive criteria of luminosity, Luminosity classes III, IV, and V, which are separated from one another by about 1 mag., are distinguishable without ambiguity. Spectroscopic parallaxes of high accuracy can be determined for the low-luminosity stars of classes F5-F8.

TABLE 20 STANDARDS AT F6

Star	MKK	a	δ	m	HD
π^{3} Ori......	F6 V	04:44	$+06^{\circ} 47^{\prime}$	3.3	F8
ρ Pup.......	F6 II	08:03	-24 01	2.9	F5
σ^{2} UMa....	F6 IV	09:01	+6732	4.9	F8
θ UMa......	F6 III	09:26	+5208	3.3	F8p
τ Boo.......	F6 IV	13:42	+1757	4.5	F5
1. Vir.......	F6 III	14:10	-05 31	4.2	F5
θ Boo.......	F6 IV	14:21	+52.19	4.1	F8
Y Ser........	F6 IV	15:51	+1559	3.9	F5
χ Dra.......	F6 V	18:22	+7241	3.7	F8
ξ Peg......	F6 III-IV	22:41	+1140	4.3	F5

Plate 33. The Cluster-Type Variable RR Lyrae

The Cluster Type Verable RR Lye
The spection of Pa laye is prewhar and caneot be located attorately in a speetral classification syytem. The intenuty of the if lanis is sumitar is the vormat dulasf \& $\operatorname{Cep}\left(\begin{array}{rl}0\end{array}\right)$ at the phase ation spectregram (a) was traben . The wuricous


```
metalles lives present in the sperterm of e Cap are
taint or vowivible io plate (s). At the same powe, the K lime
yas aut intonsity sumstar fo an corly A star. At the
phaxe whta plase (b) was takeh the if limes have beceme
```



```
to \mp@subsup{|}{}{3}0%2( (Fb), while the wetallue lives ave aboot is
Gatas as in class fo. Spesfrom(a) brars a rescmblasee fo
the kign-veliocity ditart to 1402B3. cramar Hu-Speed Specal
```

Plate 35. Luminosity Effects at F6

Next
 Contents
 Previous

26. F8

The spectral type is determined from the ratios λ 4045: H \varnothing and λ 4226: H7. The most sensitive criterion of absolute magnitude is probably the ratio $\lambda 4077$: $\lambda 4226$ for normal giants and dwarfs; while in the range from supergiants to giants the ratios $\lambda 4077$: $\mathrm{H} \delta$ and $\lambda \lambda 4171-4173$: $\lambda 4226$ allow a very accurate luminosity classification to be made.

TABLE 21 STANDARDS AT F8

Star	MKK	a	a	m	HD
50 And...	F8 IV	$01: 30$	$+40^{\circ} 54^{\prime}$	4.2	G0
36 UMa...	F8 V	$10: 24$	+5630	4.8	F5
β Vir.....	F8 V	$11: 45$	+0220	3.8	F8
θ Dra.....	F8 IV	$16: 00$	+5850	4.1	F8
v Peg.....	F8 III	$23: 20$	+2251	4.6	G0

Plate 36. Normal Giants F8 - K5

Plate 37. Luminosity Effects at F8

Plate 38. High Luminosity Stars at F8

Next
 Contents
 Previous

27. G0

The spectral type is determined from the ratios $\lambda 4045$: H 5 and λ 4226: H 7 . Luminosity differences are well shown by the ratios λ 4077: $\lambda 4226$, and λ 4077: $\lambda 4045$ and for the high-luminosity stars by λ 4077: Hס

TABLE 22
STANDARDS AT G0

Star	MKK	a	6	m	HD	Notes
†Cas A..	G0 V	00:43	$+57^{\circ} 17^{\prime}$	3.6	F8	
STri.......	G0 V	02:10	+33 46	5.1	G0	
${ }^{1}$ Per.	G0 V	03:01	+49	144.2	G0	
$\times 1$ Ori.....	G0 V	05:48	+20 15	4.6	F8	
¢ Нуа......	G0 III	08:41	+06 47	3.5	F8	1
47 UMa...	G0 V	10:53	+4058	5.1	G0	
ξ UMa....	G0 V	11:12	+3206	3.9	G0	2
$\beta_{\text {CVn.... }}$	G0 V	12:29	+4154	4.3	G0	
$\beta^{\text {Com.... }}$	G0 V	13:07	+2823	4.3	G0	
\ Boo......	G0 IV	13:49	+1854	2.8	G0	
ζ Her......	G0 IV	16:37	+3147	3.0	G0	

NOTES

1. The absorption extending toward the violet from $\lambda 4215$ is faintly present.
2. Integrated light of system.

Plate 39. The Cepheid Variable X Cygni

The Cephead Vanable X Cyant
The plate of $X \mathrm{Cag}$ was taken near maxumem lioht
The spectiol tupe can be deterawived by mferpelating between the sfandserd seperguntis ilustrated. Two usefol critena

of tupe are the infeasify of the $\mathrm{H}^{\text {i }}$ bans and the
appeavivice of the reason of the G-band. It is of the greatest impsitance in classitowng and sfidagnag the spectral variaficies of groogs of stars the the cephesis to obe stars of smaliar ?ominosity for cowpansont

Plate 40. Luminosity Effects at G0

Next
 Contents
 Previous

28. G2

The spectral type is determined by the ratios λ 4045: H 5 and λ 4226: H γ. Luminosity line ratios are λ 4077: $\lambda 4226$ and $\lambda 4077$: $\lambda 4045$.

TABLE 23
STANDARDS AT G2

Star	MKK	a	G	m	HD
λ Aur...	G2 IV-V	$05: 12$	$+40^{\circ} 01^{\prime}$	4.9	G0
$\beta_{\text {Lep... }}$	G2 II	$05: 24$	-20	50	3.0
μ Cnc....	G2 IV	$08: 01$	+2152	5.4	G0
λ Ser....	G2 V	$15: 41$	+0740	4.4	G0
$\eta_{\text {Peg.... }}$	G2 II-III	$22: 38$	+2942	3.1	G0
π Cep....	G2 III	$23: 04$	+7451	4.6	G5

29. G5

The spectral type (except for the supergiants) is determined from the ratios $\lambda 4144$: $\mathrm{H} \overline{\mathrm{\sigma}}$ and λ 4096: $\mathrm{H} \overline{5}$ and the blend at $\lambda 4030-4034$; the violet side of the G band. On spectrograms of low dispersion $\mathrm{H} \overline{5}$ appears to be stronger in dwarfs of this class than in giants and sub-giants.

TABLE 24 STANDARDS AT G5

Star	MKK	a	5	m	HD	Notes
μ Cas....	G5. V	01:01	$+54^{\circ} 26^{\prime}$	5.3	G5	1
κ Cet.....	G5 V	03:14	+03 00	5.0	G5	
- UMa...	G5 II	08:22	+6103	3.5	G0	
${ }^{3} \mathrm{Crv}$....	G5 II	12:29	-22 51	2.8	G5	
Y Нуа.....	G5 III	13:13	-22 39	3.3	G5	
70 Vir....	G5 IV-V	13:23	+1419	5.2	G0	2
$\beta^{\text {Her..... }}$	G5 II-III	16:25	+2142	2.8	K0	
I Her.....	G5 III	16:39	+39 07	3.6	K0	
μ Her.....	G5 IV	17:42	+27 47	3.5	G5	
$\xi_{\text {Her..... }}$	G5 III	17:53	+29 16	3.8	K0	

1. Considerably fainter spectroscopically than other dwarfs in table.
2. The star appears to be definitely less luminous than μ Her.

4226: $\lambda 4077, \lambda 4063: \lambda 4077, \lambda 4144: \lambda 4077, \lambda 4085: \lambda 4077, \lambda 4250: \lambda 4215, \lambda 4226: \lambda 4045$, and the relative intensity of the continuous spectrum on each side of $\lambda 4215$.

Plate 41. Luminosity Effects at G5

```
        Lumunosity Effeets At 65
The vecetral tres at 65 is detarmued by the ratues
 M\lambda 4090.4 : 4300 (volet sude of 6-band) end-with lower
wought = N人 4325:4340 Luminbutg diftevences are sheore by
the rsties Ah 4063:407, 44414077,4545:4077,4250 4as, and the re?atwe
mitrasty of the conflriviv's spectevat or each side of }\lambda42
```


There is ahs a clasige with Nomersety in the appearaiace of
the theve bwad blewas bitwen $\lambda 444$ and $A 4215$. The bread

chasige on apponame on paywng tward lowey lomeaguty

the vatio of thos hue to A A5T1 clawses tarthe ivnersula
Apromomate abrelute magatudes ane: $\mu \mathrm{Ab},+1: \mu$ Her, +37 ,
and μ Cas, $+61, \mu$ Cas is a laigh-vilocofy, star.
(ramier Ha-Speed Spacu)

Plate 42. The High-Velocity Star Boss 2527

Plate 43. The Variable Star V Vul

The Vanctile star V Vul
V Vol in a varabie star of a tipe sowiar 3 RV Tau. The speitrum which is showes is sumiler to that of the 65 superiyaint 9 Peg. The luwnomita tratumes moluate a loigh lymunavity - porvitly eusa kugher than 9 Pus. the striegich of thet (A brak at A 425, the lime at $A 4290$ and

 poot is a Urry hagh lowraosity ife V Vol. The plate of the Cramer Hb-Speen Special
Next Contents, Previous

30. G8

The spectral type (except for the supergiants) is determined from the ratios $\lambda 4144$: $\mathrm{H} \delta$ and λ 4096: $\mathrm{H} \delta$ and the ratio of the blend at $\lambda \lambda 4030-4034$ to the violet side of the G band. On the spectrograms used, $\mathrm{H} \delta$ appears to be stronger in dwarfs of this class than in giants and subgiants.

TABLE 25
 STANDARDS AT G8

Star	MKK	a	δ	m HD Note
τ Cet......	G8 V	01:39	$-16^{\circ} 28^{\prime}$	3.7 K 0
SLep......	G8 pec	05:47	-20 53	$3.9 \mathrm{K0} 1$
1. Gem....	G8 III	07:19	+2800	3.9 K0
κ Gem....	G8 III	07:38	+2438	3.7 G5
$a \mathrm{UMa} . .$.	G8 II-III	10:57	+62 17	2.0 K0
61 UMa.	G8 V	11:35	+3446	5.5 G5
S 3582...	G8 V	11:47	+3826	6.5 G5
ε Vir..	G8 III	12:57	+1130	3.0 K0
ξ Boo A.	G8 V	14:46	+1931	4.8 G5
$\beta_{\text {Boo }}$	G8 III	14:58	+4047	3.6 G5
S Boo ...	G8 III	15:11	+33 41	3.5 K 0
\& Oph....	G8 III	16:13	-04 27	$3.3 \mathrm{K0}$
TDra ...	G8 III	16:22	+6144	2.9 G5
SDra...	G8 III	19:12	+6729	$3.2 \mathrm{K0}$
к Cyg ...	G8 III	19:14	+5311	4.0 K 0
$\beta_{\text {Aql }}$...	G8 IV	19:50	+0609	3.9 K 0
SCyg ...	G8 II	21:08	+29 49	3.4 K0
μ Peg...	G8 III	22:45	+2404	3.7 K 0
λ And ...	G8 III-IV	23:32	+4555	$4.0 \mathrm{K0}$

1. The luminosity criteria of this high-velocity star are conflicting. The ratio $\lambda 4071: \lambda$ 4077 indicates a giant, while the $C N$ break at $\lambda 4215$ is almost invisible, as in class IVV.

Some of the most important luminosity line ratios are λ 4045: λ 4077, λ 4063: λ 4077, and $\lambda 4144: \lambda$ 4077. The break in the continuous spectrum at $\lambda 4215$ is one of the most sensitive discriminants of absolute magnitude. Other features are noted on the Atlas print.

Plate 44. Luminosity Effects at G8

Plate 45. The High-Velocity Star Delta Leporis

31. K0

Spectral type is determined from the ratios $\lambda \lambda 4030-4034: \lambda 4300, \lambda 4290: \lambda 4300$, and H0: $\lambda 4096$.
Luminosity differences are shown by the ratios λ 4063: $\lambda 4077, \lambda 4071: \lambda 4077, \lambda 4144: \lambda 4077$, and by the intensity difference of the continuous spectrum on each side of $\lambda 4215$.

TABLE 26
STANDARDS AT K0 AND K1

Star	MKK	$a \quad 6$	$m \mathrm{HD}$
54 Psc	K0 V	00:34 +20 ${ }^{\circ} 43$	6.1 K0
a Cas	K0 II-III	00:34 +55 59	2.3 K 0
S Eri	K0 IV	03:38-10 06	$3.7 \mathrm{K0}$
\bigcirc Aur	K0 III	05:51 +54 17	$3.9 \mathrm{K0}$
${ }^{\beta}$ Gem.	K0 III	07:39 +28 16	1.2 K 0
ζ Hya	K0 III	08:50 +06 20	$3.3 \mathrm{K0}$
$\lambda \mathrm{Hya}$	K0 III	10:05-11 52	3.8 K0
γ Leo A ...	K0 pec	10:14 +20 21	2.6 K0
46 LMi	K0 III-IV	10:47 + 3445	$3.9 \mathrm{K0}$
ν Oph	K0 III	17:53-09 46	3.5 K 0
70 Oph A.	K0 V	18:00 +02 31	4.3 K 0
${ }^{7}$ Ser	K0 III-IV	18:16-02 55	$3.4 \mathrm{K0}$
- Dra	K0 V	19:32 +69 29	4.8 K0
$\dagger_{\text {ICyg }} . .$.	K0 III	19:52 +34 49	4.0 K0
52 Cyg	K0 III	20:41 +30 21	4.3 K 0
¢ Cyg	K0 III	20:42 +33 36	2.6 K 0
ๆCep	K0 IV	20:43 +61 27	3.6 K0
${ }^{1}$ Cep	K0 III	22:46 +65 40	3.7 K0
107 Psc ...	K1 V	01:37 +19 47	5.3 G5
θ Her	K1 II	17:52 +37 16	4.0 K0
7 Cep	K1 IV	23:35 +77 4	3.4 K0

NOTES

1. The spectrum indicates a lower luminosity than ${ }^{\top}$ Cep.
2. Luminosity criteria are conflicting. From the ratio $\lambda 4063$: $\lambda 4077$ Y Leo A would be
 4215 is less than in stars of class III. The double star خLeo is a high-velocity system, and the spectral peculiarities are similar to those of the high-velocity stars a Boo and §Lep.

Plate 46. Luminosity Effects at K0

Plate 47. High Luminosity Stars at K1

32. K2

The spectral type is determined from the ratios λ 4290: $\lambda 4300$ and $\lambda 4226$: $\lambda 4325$. Absolute-magnitude differences are shown by the ratios λ 4063: $\lambda 4077$ and $\lambda 4071$: $\lambda 4077$, and the break in the continuous spectrum at $\lambda 4215$.

TABLE 27 STANDARDS AT K2

Star	MKK		m HD Note
S 222	K2 V	00:43+04 ${ }^{\circ} 46^{\prime} 5$	5.8 G5
\& Eri	K2 V	03:28-09 48 3	3.8 K0
ν Hya	K2 III	10:44-15 40	3.3 K 0
४ UMa ...	K2 III	11:04 +4502 3	3.2 K 0
χ UMa	K2 III	11:40 +48 203	3.9 K0
a Crv	K2 III	12:05-2204 3	3.2 K 0
$a \mathrm{Boo}$....	K2 pec	$14: 11+19420$	$0.2 \mathrm{~K} 0 \quad 1$
1. Dra	K2 III	15:22 +59 193	3.5 K 0
a Ser	K2 III-IV	15:39+0644	2.8 K0
κ Oph	K2 III	16:52 +09 323	3.4 K 0
β Oph	K2 III-IV	17:38 +04372	2.9 K 0
κ Lyr	K2 III	18:16+3601 4	4.3 K0
109 Her ..	K2 III	18:19 +21 43	3.9 K0
\& Aql	K2 III	18:55 +14 56	4.2 K0

NOTE

1. The spectral type is slightly earlier than the mean for class K2. The luminosity criteria are conflicting; from the intensity of $\lambda 4077$ relative to neighboring Fe lines a luminosity class of III or even slightly brighter would be obtained, while the $C N$ break at $\lambda 4215$ is considerably weaker than in other stars of class III. a Bootis is a highvelocity giant and the spectral peculiarities observed are similar to those in the case of the high-velocity giants δ Lep and Boss 2527.

The mean absolute magnitude of stars of class III is probably somewhat brighter than in types G5-K0.

Vext Contents

Previous

33. K3

The spectral type is determined from the ratios $\lambda 4226$: $\lambda 4325$ and $\lambda 4290$: λ 4299. Luminosity classes are determined from the ratios $\lambda 4071: \lambda 4077, \lambda 4063: \lambda 4077, \lambda 4045: \lambda 4077, \lambda 4260: \lambda 4215$ and λ 4325: $\lambda 4340$.

TABLE 28 STANDARDS AT K3

Star	MKK	a	δ	m	HD
6 And ...	K3 III-IV	00:34	$+30^{\circ} 19^{\prime}$	3.5	K2
1. Aur	K3 II	04:50	+3300	2.9	K2
a Hya	K3 III	09:22	-08 14	2.2	K2
$\rho_{\text {Boo }}$	K3 III	14:27	+3049	3.8	K0
$\varepsilon \mathrm{CrB}$	K3 III	15:53	+2710	4.2	K0
π Her	K3 II	17:11	+3655	3.4	K5
λ Her	K3 III	17:26	+2611	4.5	K0
a Sct.....	K3 III	18:29	-0819	4.1	K0
1 Lac	K3 III	22.11	+3715	4.2	K0
S $7259 . .$.	K3 V	23:08	+5637	5.7	K2

The mean absolute magnitude of the stars of luminosity class III is probably higher than at type K0. No subgiants were observed at K3.

Plate 48. Luminosity Effects at K3

Luminesity Effects At K 3

The spectra) thoc is deternomed frown the ration $4,4226: 4325$ and $4290: 4290$ Lewnwosity differvenes at show by the ratios 2) 4063:4977 and $4260: 4215$

Absolute magnifude dafforiness are gise sleown by the ratos of thet intewuty of the contiwupus wetefrem on each sidt of 84215 . That abyolve mosurtudt of 5 Ard is arrostd
+1 , that of $S 7299$ is about +63. Classificstion if the wpergyants is dostwed eiveinhtre cramer Ho Sperd Special

Plate 49. High Luminosity Stars at K3

```
    Hagh Lowmenity Stass At KS
    Lumentury dufikemues sve sham by the waten Me 40es:4577,
    4063: 4071 and 4325:4340. The brak at k4215 is no lomacr a
    sensitive mesucater of abselute magutide amting the hugh lumonenty
    stars. Se vafie of the intenssty of the the bierds to the wolet of
    \lambda4:4 changes with lomasit's
```



```
The spoplute mageifude of 5 And is axound +1 . The linatinopatist of the other stors ase very vacertan ; there cass be rittle doutt, houper, etuat they are areaned me cefier of tecetasing lominosity. The absolite magnitade af e Pag is pribably sexived \(-4 \mathrm{er}-5\)
Covoner hu-Speed Specal)
```


Next

canter
Previous

34. K5

The spectral type is determined from the ratios λ 4226: $\lambda 4325, \lambda 4290$: $\lambda 4299$, and $\lambda 4383: \lambda 4406$. Luminosity classes are determined from the ratios λ 4063: $\lambda 4077$ and $\lambda 4260$: $\lambda 4215$.

TABLE 29
STANDARDS AT K5

Star	MKK	a	σ	m	HD
a Tau	K5 III	$04: 30$	$+16^{\circ} 18^{\prime}$	1.1	K5
$\beta_{\text {Cnc } \ldots . .}$	K5 III	$08: 11$	+0930	3.8	K2
$\beta_{\text {UMi } \ldots . .}$	K5 III	$14: 51$	+7434	2.2	K5
7 Dra	K5 III	$17: 54$	+5130	2.4	K5
61 Cyg A..	K5 V	$21: 02$	+3815	5.6	K5

The mean absolute magnitude of the stars of class III is probably brighter than at type K0. No subgiants were observed at K5.

Plate 50. Luminosity Effects at K5

35. The M Stars

Discussion of the M dwarfs is outside the range of the present Atlas. Since no stars have been observed intermediate between M dwarfs and giants, the latter can be considered separately.

Plate 51. The M Giant Sequence

The titanium oxide bands in the photographic region increase smoothly in intensity with decreasing temperature, and spectral classification from the intensity of the bands is a temperature classification (Pl.52). The four stars illustrated in Plate 51 as standards of the M-giant sequence are on the Mount Wilson system. We are greatly indebted to Dr. Joy for checking our types at Mount Wilson. He has noted that some M stars probably vary slightly in spectral type, so that some of the standards illustrated may have a slightly different appearance at times.

Plate 52. The M Sequence as a Temperature Sequence

The absolute magnitudes of some of the giant M stars have been discussed recently by Keenan, ${ }^{(1)}$ and the details of the luminosity classification are given there. Keenan's spectral types require systematic corrections to reduce them to the Mount Wilson system. Some luminosity effects in the early M giants are illustrated in Plate 53.

Table 30 gives a selection of stars whose luminosity classes have been taken from Keenan`s paper. The spectral types are from the Mount Wilson catalogue of spectroscopic parallaxes. Luminosity line ratios are $\lambda 4045: \lambda 4077, \lambda 4215: \lambda 4250, \lambda 4376: \lambda 4383$ and $\lambda 4383: \lambda 4390$.

TABLE 30
STANDARD M GIANTS

Star	MKK	a	σ	m
RW Cep	M0: Ia	$22: 19+55^{\circ} 27^{\prime}$	$6.2^{-7.6^{*}}$	Ma Notes
μ Cep ...	M2 Ia	$21: 40+5819$	4.4^{*}	Ma
SU Per ...	M4 Ia-Ib	$02: 15+5609$	7.3^{*}	Ma
a Ori	M2 Ib	$05: 49+0723$	0.9^{*}	Ma
a Sco	M1 Ib	$16: 23-2613$	1.2	Ma
5 Lac	M0 II	$22: 25+4712$	4.6	K0
T Aur	M3 II	$05: 52+4556$	4.6	Ma
BPeg	M2 II-III	$22: 58+2732$	2.6^{*}	Ma
XPeg	M2 III	$00: 09+1939$	4.9	Ma

$\beta_{\text {And }} \ldots$.	M0 III	$01: 04+3505$	2.4	Ma
$\eta_{\text {Gem }}$	M3 III	$06: 08+2232$	3.7^{*}	Ma

NOTES

1. The spectrum indicates that the absolute magnitude is brighter than μ Cep. Spectral type by Keenan.

* Light variable.

Plate 54. A Carbon Star and a Long Period Variable

Plate 55. The Banded Stars in the Visual Region

The Banded Stion In The Visual Regyon The varions hises of banded sectra can be recoqnied and separaica from each other on plates of the yellew-red reasin having very low dispersuen. The spectrumen of $+1 s^{2} 726$ was reesgneed as hanns special mberest at the Deaborn Observaifory. It and the spectrum of WZ Cas guve

evidmee of vera bow remperature the plates on whuch the three central spectra were obtained inad stabitivity exteading farther into the red than did thase for \{Per aad RY Mon. Ha shaws as a strong evarssion inne near the righet end of the specfrums of R Lijn The spectra extend from areund A 5400 to C .6600 (in the cuse of the $N \quad a=1$ s (tans)
${ }^{1}$ Ap. J., 95, 461, 1942. Back.
Vext Contents Previous

4. THE SUPERGIANTS OF CLASSES B8-M2

The general appearance of the spectra of the supergiants of types A-K is different from that of stars of lower luminosity; and, when an attempt is made to classify the high-luminosity stars by the ratios used for ordinary giants and dwarfs, a number of difficulties are encountered. Ratios which include a hydrogen line are strongly affected by absolute-magnitude effects in classes B8-F0 and G8-K5; in the first spectral interval the H lines are greatly weakened in the supergiants, and in the second they are considerably strengthened. The lines used to classify the A5-F5 spectra are disturbed by blends in the supergiants which have a marked absolute-magnitude effect. In addition, the G band appears as a fairly continuous absorption only for types later than F8 in the supergiants; while in ordinary giants and dwarfs it is present at F 5 on plates similar to the ones used in preparing the Atlas.

For these reasons, if a highly accurate system is to be defined for supergiants and Cepheids, it is important to set up a sequence of standard supergiants by criteria suitable for the high-luminosity stars. The system defined by the supergiants in Table 31 is in fairly good systematic agreement with the Henry Draper Catalogue. The stars listed define the system accurately to about a tenth of a class, except in the case of the late A and early F subdivisions, where the accuracy is appreciably lower.

Some ratios useful in determining the spectral type of the supergiants are: $\lambda 4128-\lambda 4130: \lambda 4172-\lambda$ 4179 (A0-F0), $\lambda 4226$: H 5 (F5-G5), λ 4045: H λ (F5-G8), $\lambda 4226: \mathrm{H} \lambda$ (F5-K5), λ 4325: H λ (F5-G2), blend at $\lambda 4176$: blend at $\lambda 4200$ (G5-K5), $\lambda 4383$: $\lambda 4406$ (G8-K5), and the appearance of the region of the G band (F0-K5).

Plate 4. Supergiants O9.5-A0

Plate 20. Supergiants A0-F0

Plate 30. Supergiants F0 - K5

of 6- Dand (FO-K5), wath of 24216 relative of $\mathrm{Er}(\mathrm{IS}-\mathrm{NS})$, srowth

is a live of KS. Grewer Hi-Sped Specad)

Plate 38. High Luminosity Stars at F8

High Luminasity Stars At FB

There is eviderice that thes star f Cas is of eaceadingly high lumanesify Its spectrum is filled with ewhanced lones which are
 A number of lives shougperven in 5 Cas an mavied at the top

Lewinarity the shies are : Nh 4977 1H5, 4n1-3:4225, 4385:4325 and 4444:3325 in adjition, the regon of the 6 -tand has an enticely different appearamee in the sepernitats than in the ordinaris gasis u Pes. The spectrom of 8 CMa is similar to that of f Cas. Gramer A_{1}-Speed Speca)

Plate 47. High Luminosity Stars at K1

Plate 49. High Luminosity Stars at K3

Hegh bominesily Stars At KJ

 4063:4977 and 4325:4340. The lveak at $\lambda 4215$ is no loenacr a
 stars. Ste vati of the sutenanty of the the bierds fo the violet of A 4t4 chasies with amanif's

Plate 53. Luminosity Effects in the Early M Giants

No stars have been classified as Ia between F8 and M2; it is possible that certain luminous irregular variable stars may belong to this class in the G and K types. It is also possible that stars of the highest luminosity develop TiO bands at slightly lower temperatures than the F8 Ia stars § CMa and ${ }^{\rho}$ Cas; they might then be classified among the M stars, while their line spectra correspond to class G or K .

TABLE 31
THE SUPERGIANTS OF CLASSES B8-M2

1. The H lines are slightly stronger than in ${ }^{\beta}$ Ori.
2. The line Sr II 4077 is very Strong.
3. The Mount Wilson spectral types of the M giants have been assumed.

Plate 30. Supergiants F0-K5

Vext

Contents
Previous

5. FIVE COMPOSITE SPECTRA

Y Per. - From the ratios ν 4045: H $\overleftarrow{5}$ and ν 4226: HY and the intensity of the G band a spectral type of F6 is derived on the system of the present Atlas. The following features indicate that the spectrum in the blue region comes from two stars.

1. The $C N$ absorption, having a sharp head at $\nu 4215$, is present and is about as strong as in a giant G 2 star. This absorption was not seen in any normal star earlier than G0 examined while preparing the Atlas.
2. There is a broad, faint absorption at H 5 which makes the appearance of the region different from that in a normal F6 star. This is probably due to a broad A-type hydrogen line superposed on the narrower one.
3. The strongest absorption at K is narrow and is similar to a star near type A5, and there is almost certainly present a faint, broad K line superposed on the sharp one.

The spectral type of the component of later type is probably near G5. Its luminosity class is probably III.
a Equ. - The spectrum is similar to 7 Per. The $C N$ absorption toward the violet from $\lambda 4215$ is present and indicates that the later-type spectrum is near G5. The integrated spectral type at $\lambda \lambda 4000-4300$ is somewhat earlier than Y Per - about F5 - owing to the greater strength of the H lines. The A star appears to be somewhat brighter relative to the later-type component. The line at $\lambda 4077$ is stronger relative to λ 4045 than in 7 Per.
a Leo. - The $C N$ absorption near $\lambda 4215$ is not observed and the later-type spectrum is therefore almost certainly earlier than G0. This spectrum is combined with one of early type which, to judge by the narrow K line, is near class A2. The two components form a spectroscopic binary. The spectrograms used were obtained on April 22, 1942; on them the K line is composite, the sharp A component lying near the red edge of a faint, diffuse component. The line $\lambda 4077$ is strong, and from its intensity a similarity in luminosity to an F supergiant $[a \operatorname{Per}$ (F5) or 7 Cyg (F8)] might be assumed. The region of the G band, however, does not have an appearance like that of a supergiant of type F, and other line ratios suggest a luminosity class of around II-III. This value is uncertain; it could be determined more accurately if spectrograms on a high-contrast emulsion were available. The spectral type of the component of later type is probably near F6.
a Aur. - The combined spectral type of the two components is G2 II-III. An unpublished determination made several years ago from high-dispersion plates on which the components were resolved gives, on the system of the present Atlas,

Spectral type of primary
 G5

Spectral type of secondary F6
Combined spectral type G2 II-III

The separate values for the two components are very uncertain and may be in error by a considerable fraction of their separation.
${ }^{\beta}$ Cyg. - The spectral type of the component of late type is probably K3 II. At the position of K there is a broad, shallow absorption. It is estimated that the spectral type of the component of early type is probably earlier than A0. The features described all belong to the spectrum of ${ }^{\beta} \mathrm{Cyg} \mathrm{A}$.

```
Vext
```

Contents
Previous

6. CONCLUSION

The relation between the revised types of the B2-G0 dwarfs and color is shown in Figure 1. An approximate calibration of the luminosity classes is given in Figure 2. While any definitive calibration requires the use of many more stars than are considered here, we do not think that any of the curves should be in error anywhere by much more than a half-magnitude.

Since about a year was needed for the making of the photographic prints for the Atlas, there is a difference in epoch of that time between the classification as illustrated there and as expounded here. It was unavoidable that certain improvements and alterations should have suggested themselves in the interim. These have been incorporated in the text; and there are therefore several discrepancies between the Atlas plates and the text. In all such cases the text is to be taken as final, and the data on the Atlas prints should be altered to agree with the outline. The most important of the changes has been the shifting in spectral type of two standard stars. These are $\mu \mathrm{Peg}$ (Plates 36, 41, 44), whose type should be changed from G5 to G8, and $\sigma^{2} \mathrm{UMa}$ (Pl. 37), whose type has been altered from F8 to F6.

The characteristics of the system described here can be summarized as follows: The two-dimensional classification can be used to describe accurately the spectra of the normal stars brighter than the eighth apparent magnitude. Since this includes all but a very small percentage of the total number of stars brighter than that limiting magnitude, it is possible to derive from the extension of the classification to fainter objects certain general information concerning the distribution in space of the stars absolutely brighter than the sun.

In the course of the investigation several interesting details have been noted. Among the Be stars very broad absorption lines have been observed, which suggest maximum stellar rotational velocities somewhat higher than those found earlier. The most striking example of this is the star ${ }^{\phi}$ Per. Others stars having lines suggesting higher rotational velocities than the Bnn star, ๆUMa, are ζ Oph, 25 Ori, and $\beta_{\text {Mon A. }}$.

Figure 1. Color equivalents of B2-G0 main-sequence stars. The photoelectric color indices of Bottlinger (above) and Greenwich gradients (below) are plotted against the spectral types of the present Atlas. The stars included are those of luminosity classes IV and V which appear to be definitely less than 100 parsecs distant from the sun. The same stars are plotted in the two diagrams for types earlier than F5. Stars of class V only are shown for classes F6-G0. The multiple system ξ UMa has not been plotted.

The two relationships between color equivalent and spectral type are not similar; a simple change of zero point and scale will not suffice to change one color system to the other. There is a marked depression in the curve for the early A stars in (a) which is not present in (b). The curve in (a) is definitely concave upward from B8 to F5, while it is sensibly linear in (b). This difference is interpreted as an effect of the hydrogen lines on the violet wave lengths for the photoelectric color indices. The same effect is present to a varying degree in other catalogues of color equivalents. The two straight lines connect the centers of gravity at B8-B9 and F0-F5.

In the G and K stars other spectral features appear to affect observed color equivalents. In particular, the strong absorption due to $C N$ in giants tends to increase the color
differences between giants and dwarfs observed with short base-line photoelectric color indices. In the K stars of highluminosity a heavy absorption extending toward the violet from the vicinity of $\lambda 4300$ cannot fail to have an appreciable effect on colors determined in this region.

Figure 2. Preliminary calibration of luminosity classes in terms of visual absolute magnitude.

Also of interest is the discovery of similar spectral peculiarities in several G- and K-type high-velocity giants. The high-velocity stars \S Lep, Boss 2527,7 Leo, and probably a Boo have similar peculiar features. The most striking of these on low dispersion is the abnormal weakness of the $C N$ absorption extending toward the violet from $\lambda 4215$.

When carefully calibrated, the luminosity classification should allow the determination of accurate spectroscopic parallaxes on low-dispersion plates of stars of all classes from 09 to M2 (with the possible exception of classes B8-A2).

The spectral classification defines with accuracy a system of color standards which can be used in investigations of interstellar absorption and determinations of systematic errors in spectral classification of faint stars. It should be emphasized that the actual features used for classification are dependent on the dispersion used and that some or most of the criteria listed here might be unsuitable for use on spectra having greatly different dispersion.

We wish to acknowledge our indebtedness to the following persons: to Dr. Struve for making the publication of the Atlas possible; to Dr. Joaquin Gallo, director of the Astronomical Observatory of Mexico at Tacubaya, for the loan of a number of objective-prism plates; to Dr. A.H. Joy, of Mount Wilson, for determining the spectral types of several M giants which we have used as standards; to Dr. A.N. Vyssotsky, of the Leander McCormick Observatory, for several discussions of the problem of
spectral classification; and to Dr. G.P. Kuiper for a discussion of the dynamical parallax of δ Cygni. We are also indebted to the following persons for taking a considerable number of the spectrograms used in the investigation: Mrs. Frances Sherman Bailey, Dr. J.A. O'Keefe, Dr. L.R. Henrich, Mr. W.P. Bidelman, and Mr. Frank R. Sullivan. All the photographic prints for the Atlas were made by Miss Kellman and Miss Phyllis Anderson.

Contents
 Previous

Plate 1

05-BO Standards

The System is that of H.H. Placket (05-9) Pubs. D. A.O. 1, 365,1922

The principal criterion of type is the ratio He 4471 : Hell 4541. At $09.5 \lambda 4200$ is stull visible and the ratio He I $4387: \lambda 4200$
is used. At BO the HeI spectrum is stronger in general, while the
Eastman line SC IV 4089 is stronger than SL III 4552.

Plate 2

Two Wolf-Rayet Stars

The spectral types of the two Wolf-Rayet stars were determined by Sanford and Wilson (A DJ 90, 237, 1939).

HD 218915, a supergiant of class 09, has a spectrum similar to HD 190918, except for the emission lines. HD 164794 has a pure absorption spectrum which is very early in type

Creamer Hz Speed Special

Plate 3

Plate 4

Plate 5

The spectral type is determined from the ratio He 4471: Hell 4541
The difference in luminosity is shown by the ratios CIII $4068: S_{1}$ IX 4089 , HeIA387: WeI 4541 and ClII 4650 : He II 4686

Creamer Ht_{t} - Speed

Plate 6

Luminosity Effects at 09.5

The lines of SL IV and NIII are very strong in the spectrum of the supergiant 9 Cam; They are fainter in the dwarf σ Orc. Luminosity line ratios are: ScI 4089: $\lambda 4068, \lambda 4119$: He I 4144, He I 4387: NIII 4516, and Hell 4686: $\lambda 4650$.

$$
\begin{aligned}
& 9 \mathrm{Cam} \\
& 5 \mathrm{Ort}_{\mathrm{rt}} \\
& \sigma \mathrm{Ort}^{2}
\end{aligned}
$$

09.5 I
09.5 III 09.5 I

At class 09.5 Hell 4541 is weak or absent on plates of the dispersion indicated. The line at $\lambda 4200$ is faintly visible and is of about the same intensity as HeL 4387, except in the dwarfs. He II 4686 is intermediate in intensity between $09(10 \mathrm{Lac})$ and $B 0(\tau S c o)$ in the main sequence star σ Orionis.

Eastman
Process

Plate 7

Luminosity Effects at BO

SLD 4009 shows a progressive decrease in intensity on passing from the very lummous supergiant \in Ort toward the main sequence star \uparrow Sco. The he I lines 4387, 4144 and 4009 have a negative absolute magnitude effect and are strongest in the dwarf

ϵ Orc KOrs τ So

At class BO the line at $\lambda 4200$ is absent or very much fainter than He I 4387. Sc IV 4089 is stronger than SC III 4552. The following luminosity ratios are used: WeI 4009: Sc $4099, \lambda 4072: S$ [I 4089 , and $\lambda 4 \| 9: \operatorname{HeI} 4144$. The line $\mathrm{He} I I 4686$ is present in the

Eastman Process

Plate 8

AG Pegast $=B D+11^{\circ} 4673$

The spectrum is variable, and has been described in detail by Merrill. The bright lines in the spectrogram illustrated match, in general, absorption lines in the spectrum of the $B O$ supergiant E rionis.

AG Peg

ϵ Ort

The spectrogram of $A G$ Peg was obtained on 1941 July 19. Upper, Kramer HL Speed Special; lower, Eastman Process

Plate 9

Luminosity Effects at B0.5

The lines of OII in the vicinity of Hr are very strong in the spectrum of the supergiant κ Cos and grow progressively fainter with decreasing luminosity. The lines of NII and SC III behave similarly

k as
ϵ Per
β So

At $B 0.5$ SLIT 4552 is approximately equal) in intensity to SLIV 4089. The appearance of the blend at $\lambda 4640.50$ is intermediate between $B O$ and BI. Absolute magnitude line ratios are: NI I 3995: He 4009, $\lambda 4119$: He 4144, OII 4349 : He I 4387 and OII 4416: HeS 4387

Eastman Process

Plate 10

Luminosity Effects at BI

The lines of OII in the neighborhood of Hr are very strong in the spectrum of the supergiant 5 Per. They are weaker in $\beta \mathrm{CMa}$ - a star somewhat fainter than the brightest supergiants - and are weaker still in the main sequence star η_{0} Orionis.

ζ Per
η Ort

BI I
BI III
BI $\bar{\square}$

The spectral type at BI is defined by the following: Sill 4552 is stronger than SIV 4089 ; the blend near $\lambda 4070$ is wellmarked; the double feature at $\lambda 4640-50$ is present and the two components are of approximately the same intensity. The following ratios vary with luminosity: NII 3995 : HeY 4009, Hel 4121: WeI 4144, He 4144: OII 4416, and

Plate 11

Luminosity Effects at B2

The lines NII 3995 and SLIII 4552 are very strong in the supergiant X^{2} Ononis. The H lines show a pronounced negative absolute magnitude effect.

Plate 12

The Be Star φ Perse
The broad absorption line spectrum consists chiefly of lines due to H and HeI . The H lines are complex, and a number of emission lines are present which agree in

position with enhanced lines in absorption in the spectrum of a Cygne.

Eastman
Process

Plate 13

The Bin Stays

All of the other stars are of class
Be, except \& Ophwehi. They show spectroscopic evidence of low luminosity and are probably no brighter than
main sequence stars of the same
classes

Plate 14

The absorption spectrum of P Cygni can be classified as lying somewhere between $B 0$ and B2. The type assigned depends Eastman on the lines used for classification. Process

Plate 15

Luminosity Effects at B3

The H lines show a marked negative absolute magnitude effect. Luminosity line ratios are: NI 3995: HeL 4009 and He $4121: \mathrm{HeI} 4144$.

The S_{c} II blend at $\lambda 4129$ is slightly weaker than or equal to WeI 4121 at spectral type B3, on plates similar to the ones illustrated.

Eastman Process

Plate 16

Luminosity Effects at B5

In the supergiant $\eta \mathrm{CMa}_{a}$ the H lines are much weaker than in the main sequence star 1 . Hya. Mg II 4481 is strengthened relative to HeI 4471 in
the spectrum of the supergiant.

η CHa

1. Hya

At class B5 the S.II blend at $\lambda 4129$ is stronger relative to WeI 4144 than in the corresponding luminosity class at B3.

Eastman Process

Plate 17

Luminosity Effects at B8

The H lines are very much weaker in the spectrum of the supergiant β Ort than in that of the main sequence star β Per. The absolute magnitude effect for the ratio He I 4471: Mg II 4481 (at B3-B5) is now no longer marked.

At class B8 the WeI series $\lambda \lambda 4387,4144,4009$ has become much fainter than at B5. The SC II blend at $\lambda 4129$ is stronger relative to He I 4144 than in the same luminosity class at B5. In β Per the K line is approximately equal in intensity to $\lambda 4026$

Eastman Process

Plate 18

The Peculiar Stars β Lyr and u Sgr
The spectra of both stars vary and are very complex. Only the strongest features are shown; for detailed study plates of considerably higher dispersion are needed.
β Lur
β Ort
$\nu \mathrm{Sgr}$
α Cyg

1941 Apr 22 B8 I
1941 Aug 6
AZ I

Eastman
Process

Plate 19

Main Sequence $B 8-A 2$

He I 4026, which is equal in intensity to K in the B8 dwarf β Per, becomes fainter at B9 and disappears at $A 0$. In the 89 star a Peg He $4026=$ SuI 4129 . He I 4471 behaves similarly to WeI 4026.

Plate 20

Plate 21

Luminosity Effects At AO

The H lines become progressively stronger on passing from the supergiant HR 1040 to the main sequence star

At AO He I 4026 is faint or absent, and is weaker than SLII 4129. The lines of Fe II are strengthened in the supergiants.

Eastman Process

Plate 22

Main Sequence A2-FO

The blends at $\lambda \lambda 4030-4$ and 4300 increase rapidly in intensity from A2 to FO

The spectral type is determined from the ratios: Mn I 4030-4 : $\lambda 4128-32, \lambda 4300$:
$\lambda 4385$

Eastman
Process

The "Metallic-Line Star" 63 Thurs

The K line in the spectrum of 63 Tours has about the same intensity as in γ Geminorum (HD AO). The spectrum of the former is, however, filled with strong metallic lines. which, when considered alone, would indicate a type of class F. If the

criteria of the present atlas are used a spectral type of around F2 is indicated. There is some evidence that the line ratios suggested here give a more accurate temperature classification than those using the k line. The latter appears to behave erratically in a number of A-stars. The number of "metallic-line stars" may be large, and their classification presents an important problem. For 63 Tau, $M=+2.8$. Eastman Panatomic-X Film

Plate 24

Two Peculiar A Stars

θ Aur is typical of the "silicon stars". The Sill blend at $\lambda 4128-30$ is very strong and the K line of CalI is abnormally weak for the spectral type. The star 78 Vir is a member of the "chromium-europium group which is found near class AZ. These latter have the following

characteristics: strong lines of CrIT and EUII, abnormally weak K-line and a tendency toward variability in the spectral lines in the case of some of the stars. The SuI lines are weak in general in this class; the strong feature near $\lambda 4130$ in 78 Vir is not due principally to SuIT. The SrII lines are strong in certain members. On low dispersion the characteristic feature of this group of stars is the blend near $\lambda 4171$; with higher dispersion it is seen to be composed of a number of fainter lines.

Eastman Process

Plate 25

Luminosity Effects At A3

The difference in luminosity is shown in the ratio: $\lambda \lambda$ 4417: 4481. \& Ps A is a main sequence star, while $\gamma U \mathrm{~mL}_{\mathrm{L}}$ is considerably brighter.

The spectral type depends on the mean of the two ratios: $\lambda \lambda 4030-4: 4128-32$ and $4300: 4385$

Eastman Process

Plate 26

Luminosity Effects At A5

The luminosity difference is shown by the ratio: $\lambda \lambda$ 4417: 4481. β Art is a main sequence star, and β Mri is a giant considerably brighter

The spectral type is determined from the ratios: $\lambda \lambda 4030-4: 4128-32$ and 4300: 4385.

Eastman Process

Plate 27

The Spectrum of 17 Leporis
The spectrum of this peculiar star has been investigated in detail by struve. On low dispersion plates the characteristic features are: the great range in intensity from FrI 4233 to weaker Fe II lines, the assymetry in the appearance of the H-lines (shown most clearly at H8), and the
a Cyl
17 Lep
ϵ Bur

weakness of MgII 4481. On plates of higher dispersion the spectrum is seen to be exceedingly complex; both the intensities and positions of the lines are variable. The spectra of the supergiants α Cygni and e Auriga are shown for comparison.

> Eastman Process

Plate 28

Luminosity Effects At A7

The spectral type is determined from the ratios: $\lambda \lambda$ 4030-4:4128-32 and $4300: 4385$. Almost all lines are blends on plates of this dispersion.

The absolute magnitude effect is shown in the ratio $\lambda \lambda 4417: 4481$. The luminosity of a Age is about two magnitudes fainter than γ Boo.

Eastman Process

Plate 29

All stars illustrated are of luminosity class V Cramer H_{t}-Speed Special.

Plate 30

Supergiants FO-KS

Accurate spectral types of supergiants cannot be determined by direct comparison with normal grants and dwarfs. It is advisable to compare supergiants with a standard sequence of stars of similar luminosity. Useful criteria are: Intensity of H lines (FO-65), change in appearance

of G-band (FO-K5), growth of $\lambda 4226$ relative to $\mathrm{Hr}(F 5-K 5)$, growth of the blend at $\lambda 440 G$ (G5-KS), and the relative intensity of the two blends near $\lambda 4200$ and $\lambda 4176$ (K1-K5). The last-named blend degenerates into a line at K5. Creamer HL-Speed Special

Plate 31

Luminosity Effects At FO

Luminosity differences are shown by the ratios 4417:4481, 4444:4481 and 4172:4226. A number of enhanced lines are strengthened in the spectrum of ϵ Qurigae.
ϵ Aur
S Leo
γ Dir

Giants (CLeo) and main sequence stars ($\gamma \mathrm{V}_{\mathrm{ir}}$) are classified by the ratios 4030-4:4128-32 and 4300: 4385 . The classification of the supergiants is a special problem. E Aurigae is considered to be of class FO from the intensity of the strong Process neutral metallic lines.

Plate 32

The Peculiar F Stars $\beta C r B$ and γ Equ
$\beta C_{r} B$ is a "chromium-europiom star". On plates of higher dispersion EuII is seen to be well-marked. The blend near $\lambda 4171$, which appears to be characteristic of the "chromium stars", is strong. The blend at $\lambda 4128.30$ is not due principally to SCII. The line at $\lambda 4077$ is due partly to $C_{X} \mathbb{I}$ and partly to SuI.

γ Equ is a "strontium star". The lines at $\lambda 4077$ and 4215 of $5 \times I I$ are outstanding in strength. On plates of higher dispersion it is seen that EUII is also strong. The blend at $\lambda 4 / 28-30$ is not due principally to SLII. The strength of this blend in the spectra of stars Rater than type AO seems to be indicative of the presence of EUI. A comparison with the plate showing luminosity effects at FO indicates that the spectral peculiarities of γ Equ and $\beta C r B$ cannot be interpreted as simple absolute magnitude effects. Cramer HL. Speed Special)

Plate 33

The Cluster Type Variable RR Lur
The spectrum of RR Lur is peculiar and cannot be located accurately in a spectral classification system. The intensity of the H lines is similar to the normal dwarf \in Cop (FO) at the phase when spectrogram (a) was taken. The numerous

metallic lines present in the spectrum of ϵ lep are faint or muisible on plate (a). At the same time, the K line has an intensity similar to an early A star. At the phase when plate (b) was taken the H lines have become weaker and the K line stronger. The H lines are similar to π^{3} Orc (FG), while the metallic ines are about as strong as in class FO. Spectrum (a) bears a resemblance to the high-velocity dwarf HD 140283. Cramer HL-Speed Special

Plate 34

The Variable Star SU Tau
The light variations of SU TaU are similar to those of RCYB and RY Sgr. All three stars have spectra similar in the following respects: the hydrogen lines are exceedingly weak; the singly ionized metallic lines are similar in strength to an FS supergiant; the C_{2} band at $\lambda 4737$ is faintly

present, and the lines of CI in the neighborhood of $\lambda 4770$ are seen as a broad blend on spectrograms of low dispersion. The plate of SU TaU was taken on Sept 25,1940 . The magnitude of the variable was about 9.7

Kramer H_{L}-Speed Special

Plate 35

Luminosity differences are shown by the ratios
$\lambda \lambda 4063: 4077$ and 4272:4172. The absolute magnitude of θ UMa is about $+2 \cdot 0$, and that of $\pi^{3} \mathrm{Ors}$ is about +4.0 .

Cramer H_{L} Speed Special

Plate 36

Normal Giants F8-K5

The mean absolute magnitude of all the stars reproduced is near +0.5 . It is unlikely that any individual differs from this value by more than one magnitude (except, perhaps, a Taut, which may be a few tenths of a magnitude brighter than -0.5). Cramer H(-Speed Special

Plate 37

Luminosity Effects At F8

The spectral type is determined from the ratio $\lambda 4045: H 8$ The absorption lines are systematically weaker in the spectrum of v Peg than in the stars of lower luminosity. The absolute magnitude of v Peg is probably around 0 ; that of $\sigma^{2} \mathrm{UMa}$ is around +2.5 and a more accurate value for 36 UMa is +4.1 .

Differences in luminosity are shown by the ratios $\lambda \lambda$ 4045:4077, 4226:4077 and 4383:4172. The F8 supergiants ρ Gas and γ Cyg are shown on another plate.

Creamer H_{L}-Speed Special

Plate 38

High Luminosity Stars At F8

There is evidence that the star ρ cas is of exceedingly high luminosity. Its spectrum is filled with enhanced lines which are considerably stronger than in the less luminous supergiant rcyg. A number of lines strengthened in ρ las are marked at the top.

Luminosity line ratios are: $\lambda \lambda$ 4077:H8, 4171-3:4226, 4385:4325 and 4444:4325. In addition, the region of the 6-band has an entirely different appearance in the supergiants than in the ordinary giant $v \mathrm{Peg}$. The spectrum of $\delta \mathrm{CMa}$ is similar to that of ρ CIs. Cramer HL-Speed Special

Plate 39

The Cepheid Variable X Cygni
The plate of X CHg was taken near maximum light. The spectral type can be determined by interpolating between the standard supergiants illustrated. Two useful criteria

of type are the intensity of the H lines and the appearance of the region of the G-band. It is of the greatest importance in classifying and studying the spectral variations of groups of stars like the cepheids to use stars of similar luminosity for comparison.

$$
\text { Cramer } H_{L} \text {-Speed Special }
$$

Plate 40

Luminosity Effects At GO

The spectral type is determined from the ratios $\lambda \lambda 4045$: H8 and 4325 : Hr for all stars except supergiants. Luminosity differences are shown by the ratios $\lambda \lambda 4063: 4077,4144: 4077$, and the ratio of the surface intensities of the blends centered near $\lambda \lambda 4272$ and 4200 .

The absolute magnitude of η Boo is about +3.1 ; that of § Ma is about +5.0 Creamer HL Speed Special

Plate 41

Luminosity Effects At G5

The spectral type at $G 5$ is determined by the ratios A1 4030-4: 4300 (violet side of G-band) and - with lower weight - $\lambda \lambda$ 4325: 4340 Luminosity differences are shown by the ratios it $4063: 4077,4144: 4077,4085: 4077,4250: 4215$, and the relative intensity of the continuous spectrum on each side of $\lambda 4215$

There is also a change with Luminosity in the appearance of the three broad blends between $\lambda 4144$ and $\lambda 4215$. The broad feature extending toward the violet from $\lambda 4132$ undergoes a change in appearance on passing toward lower luminosity and degenerates into a fairly well defined line in μ las. The ratio of this zine to $A 4077$ changes with Luminosity. Approximate absolute magnitudes are: $\mu \mathrm{Peg},+1 ; \mu \mathrm{Her},+3 \cdot 7$; and μ las,$+61 . \mu$ las is a high-velocity star.

> Cramer Hi-Speed Special)

Plate 42

The High - Velocity Star Boss 2527
The spectrum of Boss 2527 is similar to that of 8 Lee, except that the spectral type is slightly earlier. The radial velocity of Boss 2527 is $+136 \mathrm{~km} / \mathrm{sec}$. From the weakness of the $C N$ break af $\lambda 4215$ and the line $S r$ II 4215 if would be classified as a subgiant or dwarf. On the other hand, the ratio M1 4077:4071
ans rise

indicates that it is a giant star, similar in Luminosity to μ Peg. If analogy to δ Lee is considered justified the parallax of Boss 2527 is found to be around 0!007. High -velocity stars like Boss 2527, δ Lee and α Boo appear to be the only stars likely to cause serious trouble in using the method of spectroscopic parallaxes. Objects showing more marked peculiarities (such as the $\mathrm{R}-\mathrm{N}$ stars) are immediately recognizable and can be eliminated.

Plate 43

The Variable Star V Vul

\checkmark Vul is a variable star of a type similar to RV TaU. The spectrum which is shown is similar to that of the 65 supergiant 9 Peg . The luminosity features indicate a high luminosity-possibiy even higher than 9 Peg. The strength of the $C N$ break at $\lambda 4215$, the line at $\lambda 4290$, and

the intensity of the line at $\lambda 4376$ as compared to $\lambda 4383$ all pant to a very high luminosity for V Vul. The plate of the latter was taken on 1940 sept 28.

Cramer Ho-speed Special

Plate 44

Luminosity Effects At G8

The spectral type is determined from the ratio Mn 4030-4: $\lambda 4300$ (violet side of 6 -band). Differences in luminosity are shown by the ratios id 4045:4077, 4063:4077, 4144:4077, and by the difference in the intensity of the continuous spectrum on each side of $\lambda 4215$.

```
00455093
```


Luminosity differences are also shown by the ratio of the surface intensity of the blends near $\lambda 4176$ and $\lambda 4200$. In addition, there is a marked difference in the appearance of the blend to the violet of X 4144 on passing from the grant to the dwarf. In the latter the blend degenerates into a line near $\lambda 4132$ whose ratio to $\lambda 4077$ forms a sensitive discriminant for the separation of subgiants and dwarfs. Approximate absolute magnitudes are: $\beta \mathrm{BoO}, \mathrm{O} ; \beta \mathrm{Ag})_{1}+3 \cdot 3$; and $\tau \mathrm{Cet}_{1}+6 \cdot 1$.

Cramer HC-Speed Special

Plate 45

The High-Velocity Star δ Leporis

The spectroscopic parallaxes of this star range from 0.132 and 0.096 (Harvard) 10 0.079 (Mount Wilson) and 0.030 (Victoria). The trigonometvic parallax is of the adder of 0.020 or 0.030 . The reason for the discrepancy seems to be the conflicting values of the luminosity

criteria. The break at $\lambda 4215(C N)$ is no greater than in $\beta A g)$ and is much less than in the giant β Boo. This would give a parallax of around $0!1$. The ratio $\lambda 4071: \lambda 4077$ mdicates a grant, however, and suggests a parallax of around o! o25. Other criteria probably lie between these extremes. This peculiarity occurs in other high -velocity grants of classes $65-\mathrm{KI}$ and macy be a characteristic of the group. The tendency is to make the spectroscopic parallax too great; this is probably the explanation of the long-standing discrepancy in the case of the high-velouty giant a Bootis.

Plate 46

Luminosity Effects At KO

The spectra are classified from the ratios $\lambda \lambda 4325: 4340$ and 4030-4:4300 (violet side of G-band). Luminosity differences are shown by the ratios FeD 4063:5vM 4077, Fer 4144:4077 and by the intensity difference of the continuous spectrum on each side of $\lambda 4215$.

Luminosity differences are also shown by the ratio of the surface intensities of the blends $\lambda \lambda$ 4030-4:4178. In addition, the broad absorption feature to the violet of FeI 4144 changes in appearance on passing toward the dwarfs and finally degenerates into a fairly well defined line near $\lambda 4132$. The ratio of this line to $\lambda 4077$ shows luminosity differences. Approximate absolute magnitudes are: a Gas, -1 ; i Sep, 115 ; η Cop, $+228 ; \sigma$ Ora, +6.1 . Creamer H. Speed Special

Plate 47

High Luminosity Stars At KI

Luminosity line ratios are: $\lambda \lambda 4045: 4077,4101: 4144,4325: 4340$. In addition, the CN break at $\lambda 4215$ has its greatest intensity (except in the carbon stars) in supergiants like 5 Cep . It is slightly weaker in O Her and weaker still in the ordinary grant © Dur.

The stars S ep and θ Her can be said to define the spectral type KI for their respective luminosity classes. Their absolute magnitudes are very uncertain; s dep is probably around -4 or -5 , while 9 Her is probably about a magnitude fainter. The absolute magnitude of SPur is probably near +0.5 .

Cramer Ho-speed Special

Plate 48

Luminosity Effects At K 3

The spectral type is determined from the ratios in 4226:4325 and 4290:4299 Luminosity differences are shown by the ratios $\lambda \lambda 4063: 4077$ and 4260:4215.

Absolute magnitude differences are also shown by the ratio of the intensity of the continuous spectrum on each side of $\lambda 4215$. The absolute magnitude of δ And is around +1 ; that of 57259 is about +6.3 . Classification of the supergiants is discussed elsewhere. Kramer HL Speed Special

Plate 49

High Luminosity Stars At K3

Luminosity differences are shown by the ratios $\lambda 14045: 4077$, 4063:4077 and 4325:4340. The break at $\lambda 4215$ is no longer a sensitive indicator of absolute magnitude among the high luminosity stars. The ratio of the intensity of the two blends to the violet of $\lambda 4144$ changes with luminosity.

The absolute magnitude of 8 And is around +1 . The luminosities of the other stars are very uncertain; there can be little doubt, however, that they are arranged in order of decreasing luminosity. The absolute magnitude of ϵ Peg is probably around -4 or -5 .
Creamer HL-Speed Special

Plate 50

Luminosity Effects At K 5

The spectral type is determined from the ratios $\lambda \lambda 4226: 4325$ and 4290:4299. Differences in absolute magnitude are shown by the ratios $\lambda \lambda 4063: 4077$ and 4260:4215. In addition, a number of lines which are enhanced in the spectrum of 61 Cg A are enclosed in a bracket in the region of $\lambda 4400$.

The absolute magnitude of a Tau is around -0.9 . That of 61 Cyg A is about +8.0 .

Cramer HL Speed Special

Plate 51

The M Giant Sequence The ThO bands appear at MO and grow uniformly stronger with advancing type. The fainter Tho bands in the blue region become very strong in the latest M classes. The spectral types are on the Mount Wilson system.

The suppression of the blue-green region by TLO is very marked in the advanced M spectra. In the case of RT Virginis the spectral energy distribution in the region is 4000-5000 simulates a star of considerably higher temperature.

Cramer He-Speed Special

Plate 52

The M Sequence is A Temperature Sequence

The spectral types of the four stars were determined from the T:O bands in the blue-green region (not shown in the illustration). The arrangement in order of increasing band absorption has the following characteristics: the strong FeI lines having excitation potentials of around 1.6 volts grow systematiccalls weaker; ultimate lines of TLI, CaI and CVI grow systematically stronger;

the KI pair situated on each side of WeI 4045, and blended with it on the spectra shown, become systematically stronger. This is shown by the change in the width of the line from MO to MB. These changes indicate that stars having the strongest bands have also the lowest excitation temperatures among the M stars. They thus show that the TO bands do not pass through a maximum of intensity. The plates were taken by Keenan with the McDonald 82 -inch reflector and a spectrograph giving a dispersion of 65 A per mm at $\lambda 4200$. The progressive change in the line spectra of M grants was first described in detail by Merrill and his associates at Mount Wilson. Agra. Super Plenachrowe Press

Plate 53

Luminosity Effects In The Early M Giants
The spectral types were determined from the intensity of the green TiO bands, which are not shown in the illustration. The line CaI 4226 has a pronounced negative absolute magnitude effect. The CN break at $\lambda 4215$ is present in μ ep, possibly faintly present in a Sco, and probably absent in X Peg,

Luminosity line ratios are: $\lambda \lambda 4215: 4260,4376: 4383$, and $4389: 4383$, The absolute magnitude of $\mu \mathrm{Cep}$ is probably around -6 , that of a Sco is near -4.0 . X Peg appears to be an ordinary M giant with an absolute magnitude of about 0 . Creamer HL-Speed Special

Plate 54

A Carbon Star And A Long Period Variable

The spectrum of HD 52432 (upper) contains strong bands of C_{2} and $C N$. Its spectral type on the R-N system is R5; this corresponds to an equivalent spectral type of around K4. The spectrogram was taken on Agha Super Plenachrome Press Film.

The spectrum of o Cetc (lower) has strong bands of $T_{L O} O$, and the viltimate lines of CaI, CYI and AI I are very strong in absorption. There are also a number of strong emission lines present, including the Balmer lines, SII 3905, and Fe I 4202 and 4376 . The spectrum was taken on nov 8, 1940, when Mira was near the eighth magnitude, approaching light minimum Creamer HL -Speed Special

Plate 55

The Banded Stars In The Visual Region
The various kinds of banded spectra can be recognized and separated from each other on plates of the yellow-red region having very low dispersion. The spectrum of $+15^{\circ} 726$ was recognized as having special interest at the Dearborn Observatory. It and the spectrum of $W Z$ las give

evidence of very low temperature. The plates on which the three central spectra were obtained had sensitivity extending farther into the red than did those for Per and RY Mon. Ha shows as a strong emission Ene near the right end of the spectrum of R Lin. The spectra extend from around $\lambda 5400$ to $\$ 6600$ (in the case of the N and S stars).

